
904

Letters to the Editor

Am. J. Hum. Genet. 69:904, 2001

Patterns of Y-Chromosome Variation in South
Amerindians

To the Editor:
Tarazona-Santos et al. (2001) compute estimates of
within- and among-group genetic variability for South
Amerindian Y-chromosome samples that are thought to
represent tribal populations living in various major geo-
ecological regions of South America: the Andean high-
lands, the Brazilian plateau, the Chaco region, the Ar-
gentinian pampa, and the Chilean rain forest.

The samples are agglomerated into two groups, one
representing populations from the Andean highlands
and the other representing populations from Amazonia,
the Brazilian plateau, and the Chaco. Variability esti-
mates are computed for both subdivisions and are con-
sequently compared, with the Andean group exhibiting
higher values. For apparently unjustified reasons, a sam-
ple from the tropical forest of Ecuador that has an Am-
azonian origin and exhibits the highest within-group
variability is excluded from the analysis, unfortunately
casting doubt on the reliability of the results.

Various among-group variability estimates and their
association with distances among map locations of
places where samples were presumably collected are
computed next. We are aware of the difficulties in ob-
taining Amerindian samples, but the extremely small size
of some samples used in this study (the central Brazilian
plateau is represented by five individuals) precludes the
possibility that among-group variability statistics are un-
biased estimators of population relationships. The lack
of association between genetic and geographic distances
may be a reflection of this shortcoming.

On the basis of their results, Tarazona-Santos et al.
(2001) conclude that two Y-chromosome microevolu-
tionary models that involve differential patterns of ge-
netic drift and gene flow characterize South Amerindi-
ans. Andean populations exhibit low rates of genetic
drift and high rates of gene flow, whereas populations
from Amazonia, the Brazilian plateau, and the Chaco
exhibit high rates of drift and low rates of gene flow. It
seems to us that this is a rash generalization, if it is based
on the variability estimates presented in this study. Fur-
thermore, it presupposes that non-Andean South Am-

erindian tribes living far apart, in markedly different
geoecological areas, can be agglomerated and treated as
one homogeneous group sharing the same population
structure. We are not convinced that this is a realistic
assumption.
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Reply to Rothhammer and Moraga

To the Editor:
Rothhammer and Moraga raise objections to the con-
clusions in our article describing global patterns of Y-
chromosome diversity among South Amerindian pop-
ulations (Tarazona-Santos et al. 2001). We do not think
that their criticisms are valid, for the following reasons.

First, Rothhammer and Moraga argue that our con-
clusions are not well grounded, since they were only
based on the Y-chromosome data presented in our ar-
ticle. This is not correct. In the article, we present and
discuss the good concordance between our Y-chromo-
some data and the analyses of classical marker variability
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previously performed by our group (Luiselli et al. 2000;
Simoni et al. 2000b and references therein).

Second, they criticize the size of our samples. We cer-
tainly agree that large samples are better than small ones.
For small samples, large standard errors are expected,
and such errors can conceal geographical patterns where
they exist but cannot generate statistically significant
patterns where none exist. That we observed significant
differences in within-population variability means that
our sample sizes were not too small—or, at least, were
large enough to support our conclusions. This is further
confirmed by the fact that a significant correlogram was
identified using the Spatial Autocorrelation Analysis
(AIDA), which means that association between genetic
and geographic distances exists. Rothhammer and Mor-
aga apparently have missed this subtle point.

Third, they criticize the aggregation of the differen-
tiated Eastern populations to compare within-popula-
tion variability among eastern and Andean populations.
This, of course, has to be done carefully and, indeed,
we mention in our paper (the last 23 lines of p. 1488)
that this agglomeration might produce an artificial
Whalund effect (i.e., it might inflate the gene diversity).
However, this would create a bias acting against our
conclusions and therefore has the effect of rendering our
results more robust. Again, Rothhammer and Moraga
have missed the point.

Furthermore, we have now made the following cal-
culations from our published data. (1) The 95% confi-
dence interval (CI) of average gene diversity in the east-
ern populations, when the Cayapa sample is included,
is 0.398–0.459, which does not overlap with the 95%
CI of average gene diversity in Andean populations
(0.463–0.524). (2) When Rst values for the eastern part
of the continent are recalculated excluding one small
sample each time ( ), they are always 123% (n ! 9 P !

). Therefore, (1) our conclusions are still valid when.01
the Cayapa sample, from Ecuadorian Amazonia, is con-
sidered an eastern population, and (2) the higher level
of between-population differentiation is not an artifact
of some small sample. We still think the Cayapa should
be analyzed separately, and our reason for including
them in the article was to illustrate that, in the future,
our model can incorporate new elements, allowing for
the inclusion of tribes with peculiar population histories,
such as the amalgamation of Amazonian and Andean
tribes.

By definition, models are working simplifications of
reality. They should be continuously tested for goodness-
of-fit as new data arise and, as a consequence of this,
may be reinforced, modified, or rejected. Anyhow, model
building is essential in science. The model proposed by
us is very simple. South American genetic-variability
data are scanty when compared, for instance, with data
about Europe. For this reason, our model did not in-

corporate detailed migratory routes or estimates of the
times when these migrations occurred. Future data may
allow such refinements to be built in. Nevertheless, we
think even a simple model should be based on accurate
comparisons, the statistical significance of which must
be assessed—which means that, one way or another,
“probabilities or likelihoods should be estimated” (Si-
moni et al. 2000a).

Rothhammer and Moraga consider our results insuf-
ficient for any conclusions. However, Rothhammer and
Silva (1989, 1992) proposed a much more complicated
model, claiming genetic evidence of demic expansion
accompanying the diffusion of manioc cultivations from
central Amazonia to the Andean area, on even scantier
data. Although we recognize that Rothhammer and
Silva’s proposal may be more appealing than our simple
model, their fascinating tale about the migration of man-
ioc farmers is not supported by any statistical test but,
rather, is based on a cline inferred from synthetic genetic
maps in an area where data are scanty or absent alto-
gether (see figs. 1 and 2 of Rothhammer and Silva
[1992]). Sokal et al. (1999) showed that, when samples
are few and distant in space, synthetic maps obtained
by interpolation often suggest a geographic trend, even
when the data are spatially random.

We suspect that, in the case of our model, a simple
unconvincing statement, even if authoritative, is not suf-
ficient to discredit it. We are ready to accept that further
data, or even an accurate reanalysis of our data, could
challenge our model, but this seems not to be the case
with Rothhammer and Moraga’s criticisms. We think
that, at the moment, the data about genetic variability
of South Amerindians (at least for classical markers and
molecular Y-chromosome variability) support our model
rather than any of its alternatives.
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Vergata,” Roma; and 6Department of Biochemistry,
University of Oxford, Oxford



906 Letters to the Editor

References

Luiselli D, Simoni L, Tarazona-Santos E, Pastor S, Pettener D
(2000) Genetic structure of Quechua-speakers of Central
Andes and geographic patterns of gene frequencies in South
Amerindian populations. Am J Phys Anthropol 113:5–17

Rothhammer F, Moraga M (2001) Patterns of Y-chromosome
variation in South Amerindians. Am J Hum Genet 69:904
(in this issue)

Rothhammer F, Silva C (1989) Peopling of Andean South
America. Am J Phys Anthropol 78:403–410

——— (1992) Gene geography of South America: testing
models of population displacement based on archeological
evidence. Am J Phys Anthropol 89:441–446

Simoni L, Calafell F, Pettener D, Bertranpetit J, Barbujani G
(2000a) Reconstruction of prehistory on the basis of genetic
data. Am J Hum Genet 66:1177–1179

Simoni L, Tarazona-Santos E, Luiselli D, Pettener D (2000b)
Genetic differentiation of South America native populations
inferred from classical markers: from explorative analysis to
a working hypothesis. In: Renfrew C (ed) America past,
America present: genes and languages in the Americas and
beyond. McDonald Institute for Archeological Research,
Cambridge, pp 123–134

Sokal RR, Oden NL, Thomson BA (1999) A problem with
synthetic maps. Hum Biol 71:1–13

Tarazona-Santos E, Carvalho-Silva D, Pettener D, Luiselli D,
De Stefano GF, Martinez-Labarga C, Rickards O, Tyler-
Smith C, Pena SDJ, Santos FR (2001) Genetic differentiation
in South Amerindians is related to environmental and cul-
tural diversity: evidence from the Y chromosome. Am J Hum
Genet 68:1485–1496

Address for correspondence and reprints: Dr. Fabrı́cio R. Santos. Departa-
mento de Biologia Geral, ICB, UFMG, Av. Antônio Carlos 6627, CP 486,31.270-
010, Belo Horizonte, MG, Brazil. E-mail: fsantos@ icb.ufmg.br

* Present affiliation: Department of Biology, University of Maryland, College
Park, MD.

� 2001 by The American Society of Human Genetics. All rights reserved.
0002-9297/2001/6904-0027$02.00

Am. J. Hum. Genet. 69:906–912, 2001

Comparisons of Two Methods for Haplotype
Reconstruction and Haplotype Frequency Estimation
from Population Data

To the Editor:
Haplotype reconstruction is an important issue, both in
population genetics and in the identification of complex
disease genes. Stephens et al. (2001) proposed a new
statistical method (called the “PHASE method” in the
following discussion, after the name of their computer
program) for haplotype reconstruction based on phase-
unknown marker genotype data from unrelated individ-
uals in a population. On the basis of their simulations

using coalescent models, they found that the PHASE
method can reduce the error rate by 150% relative to
the maximum-likelihood method, implemented via the
expectation-maximization (EM) algorithm (Xie and Ott
1993; Excoffier and Slatkin 1995; Hawley and Kidd
1995; Long et al. 1995). One limitation of their study
is the fact that their simulations are based on coalescent
models, which may not be good approximations of hu-
man population evolutionary histories. In fact, the au-
thors acknowledge that “there simply do not exist
enough real data sets, with known haplotypes for se-
quence or closely linked markers, to allow sensible sta-
tistical comparisons of different methods” (Stephens et
al. 2001; p. 982). In this letter, we report a comparison
of the two methods; our comparisons involve phase-
known genotype data sets, as well as simulations using
empirical population haplotype frequency data. Our re-
sults show that, in general, for most of the populations
studied, there is no significant difference between the
PHASE method and the EM method, both in the average
error rate for haplotype reconstruction and in the dis-
crepancy (see the report by Stephens et al. [2001] for
definitions of these measures) between the estimated and
true sample haplotype frequencies.

For our simulations based on empirical population
haplotype frequency data, we used population haplotype
frequencies for four loci (RET, COMT, HOXB and
D4S10, with 3, 4, 5, and 6 polymorphisms, respectively)
found in samples of four populations: European Amer-
icans, San Francisco Chinese, Biaka, and Maya. We use
these four populations to represent the populations from
four different continents. Descriptions of the popula-
tions and of the samples of those populations, as well
as the haplotype definitions, can be found in ALFRED
(Osier et al. 2001; ALFRED Web site). For each locus
and each population, we randomly chose 2n haplotypes
according to the haplotype frequencies and then ran-
domly paired the haplotypes to form a population of n
individuals with phase-known genotypes. The abilities
of the two methods to reconstruct these haplotypes from
the resulting data, ignoring phase information, were then
evaluated. Twenty independent replicates for each pop-
ulation-locus combination were generated to compare
the two haplotype reconstruction methods.

To estimate the haplotype frequencies, we imple-
mented the EM algorithm in a computer program that
analyzes the simulated data sets with the starting point
of equal frequencies for every possible haplotype. We
expect that any of the programs implementing the EM
algorithm should yield similar results. Following Ste-
phens et al. (2001), we specify the haplotype pair for an
individual by choosing the most probable haplotype pair
consistent with the individual’s multisite genotype. The
program developed by Stephens et al. (2001) was used
to evaluate the performance of the PHASE method with



Figure 1 Comparisons between the EM method (dotted lines) and the PHASE method (solid line) for genotype data at the RET site, with three single-nucleotide polymorphisms (SNPs). For
each scenario, we generate 20 independent data sets and, thus, each point represents an average of 20 simulated data sets. Vertical lines (left line for the PHASE method and right line for the EM
method) show approximate 95% confidence intervals for the estimates (standard error p �2).
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Figure 2 Comparisons between the EM method (dotted lines) and the PHASE method (solid line) for genotype data at the COMT site, with four SNPs. Conditions of each scenario, format of
the graphs, and standard error are the same as those described in figure 1.
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Figure 3 Comparisons between the EM method (dotted lines) and the PHASE method (solid line) for genotype data at the HOXB site with five SNPs. Conditions of each scenario, format of
the graphs, and standard error are the same as those described in in figure 1.



Figure 4 Comparisons between the EM method (dotted lines) and the PHASE method (solid line) for genotype data at the D4S10 site with six SNPs. Conditions of each scenario, format of
the graphs, and standard error are the same as those described in figure 1.
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Table 1

Comparisons between the EM Method and the PHASE Method, Using a Set of Phase-Known Data Sets at the CD4
Locus

POPULATION

NO. OF

INDIVIDUALS

NO. OF DOUBLY

HETEROZYGOUS

INDIVIDUALS

NO. OF INCORRECTLY

RECONSTRUCTED INDIVIDUALS

DISCREPANCY BETWEEN

TRUE AND ESTIMATED

HAPLOTYPE FREQUENCIES

EM Method PHASE Method EM Method PHASE Method

Biaka 53 8 3 3 .045 .057
Bantu 40 15 3 1 .089 .025
Herero 42 7 1 1 .024 .024
Mbuti 37 6 4 0 .086 0
Nama 32 5 2 2 .069 .069
Sekele 51 10 2 2 .036 .039
Wolof 46 13 3 3 .057 .065
Somali 24 5 0 0 0 0
Zu Wasi 44 5 2 2 .045 .034

Total 369 74 20 14 .05a .034a

a Represents mean value for all nine populations.

the default parameter values in the Markov chain Monte
Carlo simulations—that is, with 10,000 iterations, a
thinning interval of 100, and a burn-in value of 10,000.

The comparison results for the four loci (each locus
across four populations) are summarized in figures 1, 2,
3, and 4. The results show that, for almost all the cases
we considered, the discrepancies between the estimated
haplotype frequencies and the true haplotype frequencies
are almost the same for the two methods. The average
errors in haplotype reconstruction show slight differ-
ences across the four loci. The PHASE method gave bet-
ter results than did the EM method, for the RET data
sets with three polymorphisms; however, the EM method
was better overall than the PHASE method for the other
three loci—that is, for COMT, HOXB, and D4S10. The
biggest difference between the results of the PHASE
method and those of the EM method was found for the
RET gene in the Biaka population. For this particular
population/locus combination, only four of a possible
total of eight haplotypes were inferred to be present,
with the following haplotype frequencies: P(000) p

, , , and.089 P(001) p .747 P(011) p .029 P(101) p
. In the above notation, the two alleles at each poly-.089

morphism are represented by 0 and 1, respectively. This
situation seems optimal for a coalescent model, since
each of the three uncommon haplotypes is one mutation
away from the single very common haplotype. Samples
drawn from this population would have few double het-
erozygotes, and a coalescent model would favor infer-
ring the presence of haplotypes that are only one step
away from the common haplotypes, rather than a hap-
lotype two steps away. On the other hand, the EM al-
gorithm will not add that bias. Despite the differences
between the two methods, from the approximate 95%
confidence intervals shown in the figures, we can see that

there is no significant difference between these two meth-
ods, for most of the cases.

In our comparisons based on phase-known data sets,
we used a subset of Tishkoff et al.’s (2000) CD4 ge-
notype data, for nine populations (Biaka, South African
Bantu, Herero, Mbuti, Sekele, Wolof, Somali, and Zu
Wasi). Two markers, an Alu deletion polymorphism (2
alleles) and a microsatellite marker (12 alleles), were
typed at CD4, and phases of doubly heterozygous in-
dividuals were determined molecularly (Tishkoff et al.
2000). The data and the results obtained by the EM
method and the PHASE method are summarized in table
1.

There are a total of 74 doubly heterozygous individ-
uals in nine populations. The error rates of the EM and
the PHASE methods for haplotype reconstruction are
27% and 19%, respectively. The average discrepancies
between haplotype estimates for the EM and PHASE
methods are 5% and 3.4%, respectively. Therefore,
across all of these nine populations, the PHASE method
improved on the EM method by 130%; however, it can
be seen from table 1 that the improvements did not come
from across all of the populations. Instead, the two
methods had identical performance in haplotype recon-
struction for seven populations. In terms of average dis-
crepancies, the PHASE method is better than the EM
method for three populations, and the EM method is
better than the PHASE method for three other popu-
lations. In the two populations for which the PHASE
method outperformed the EM method—that is, the
Bantu and Mbuti—the cause of the poorer performance
of the EM method is the same as that for the simulation
results based on empirical population haplotype fre-
quency data. We note that even for the populations in
which the two methods yielded the same number of in-
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correctly reconstructed individuals, an individual may
be reconstructed correctly by the Phase method but not
by the EM method; on the other hand, an individual
may be reconstructed correctly by the EM method but
not by the Phase method.

In the present study, we have compared the EM
method with a recently proposed haplotype reconstruc-
tion method (Stephens et al. 2001), through use of em-
pirical population haplotype frequency data and phase-
known genotype data sets. The PHASE method is based
on the coalescent theory; however, it is likely that a sim-
ple coalescent model will not be a good representation
of the actual history of a human population because of
fluctuating population size, migration, and other factors.
If the model is not appropriate, analyses that assume the
model cannot be expected to yield more-accurate esti-
mates of haplotype frequencies than analyses making no
historical assumptions. The degree to which such a
model is representative may vary according to popula-
tion and locus. In the results of our simulations using
empirical population haplotype frequency data, the
PHASE method showed no improvements over the EM
method, except at the RET locus in an African popu-
lation. For the nine African populations in which hap-
lotypes were inferred through molecular methods, the
EM method and the PHASE method yielded almost iden-
tical results in seven populations, and the PHASE
method did outperform the EM method in the other two
populations. Therefore, our systematic comparisons sug-
gest that the PHASE method may not yield consistently
significantly improved estimates; this is contrary to the
consistent improvements observed by Stephens et al.
(2001). In summary, across all of the examples studied,
the PHASE method did not yield significantly different
results from a simple maximum-likelihood procedure.
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Reply to Zhang et al.

To the Editor:
Stephens et al. (2001) (henceforth referred to as “SSD”)
introduced a new statistical method for haplotype re-
construction, called “PHASE,” that has three major ad-
vantages over existing approaches, including EM. The
letter from Zhang et al. (2001 [in this issue]) (henceforth
referred to as “ZPKZ”), questions one of these—namely,
the increased accuracy of PHASE.

ZPKZ report two kinds of comparisons. The first is
based on “empirical population haplotype frequency
data,” and the second is based on data for which the
true phase is determined experimentally. Only the second
of these types is actually based on “real” data in the
usual sense, and when these data are used, PHASE does
considerably outperform EM. We report comparisons
below, using three other real data sets. In each case,
PHASE provides haplotype reconstructions that are
more accurate than those provided by EM, sometimes
considerably so.
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Table 1

Discrepancies Obtained by PHASE and EM on
Genotypes from the CAPN10 Locus

SAMPLE

DISCREPANCY OBTAINED BY

EM Method PHASE Method

Combined .13 .05
Population 1 .14 .09
Population 2 .26 .08
Population 3 .00 .00
Population 4 .23 .13

Much of the discussion by ZPKZ—as well as, appar-
ently, their discouraging conclusion for PHASE—is
based on their first set of comparisons. Unfortunately,
their terminology may cause some confusion. The “em-
pirical” haplotype frequencies on which they base their
comparisons are not, in fact, haplotype counts in real
data. Instead (S. Zhang, personal communication), al-
though not mentioned in their letter, the “empirical”
frequencies are actually estimates, provided by the EM
algorithm, from genotype data.

PHASE is best thought of as a Bayesian method for
haplotype reconstruction. Its potential to improve on
maximum likelihood (and, hence, on EM) comes from
its use of prior information. In particular, it incorporates
the prior knowledge that unresolved haplotypes will
tend to be the same as, or similar to, known haplotypes.
When this is true in actual data, PHASE will typically
provide better haplotype estimates. The comparisons by
ZPKZ suggest that, when such clustering of haplotypes
is not present, PHASE does not perform systematically
worse than EM.

As emphasized by SSD, although PHASE uses a co-
alescent approximation to quantify the fact that hap-
lotypes tend to be similar to one another, PHASE does
not depend on the assumptions underlying the coalescent
model, and we would expect it to perform well under
much more general settings, including population struc-
ture, recombination, and selection.

In collaboration with H. Ackerman, we have com-
pared EM and PHASE for haplotypes determined from
pedigree data at the IL8 and TNF loci. At the IL8 locus,
Hull et al. (2001) typed six single-nucleotide polymor-
phisms (SNPs) over 4.5 kb in 61 Gambian parents-child
triples. Of the 122 parents, 102 had haplotypes that were
unambiguous or that could be determined from the
child’s genotype. At the TNF locus, H. Ackerman (un-
published data) typed 12 SNPs over 4.3 kb in 53 Gam-
bian parents-child triples, and the same procedure gave
96 unambiguous parents. For each locus, we applied EM
and PHASE to the subset of unambiguous parents and
computed the error rates. At IL8, error rates were 7/31
for EM and 6/31 for PHASE; at TNF, error rates were
24/88 for EM and 10/88 for PHASE. Thus, PHASE re-

duced error rates in these data sets by 14% and 58%,
respectively.

We are grateful to S.M. Fullerton, G. Ybazeta, and A.
DiRienzo (personal communication), for allowing us to
report the following results of their unpublished com-
parison of PHASE and EM on molecularly determined
haplotypes at the CAPN10 locus. They typed 46 indi-
viduals from four populations ( , 12, 11, and 12)n p 11
at 14 biallelic SNPs and found the discrepancy for the
algorithms applied to the combined sample and applied
to the four population samples separately. PHASE con-
sistently outperformed EM, reducing discrepancy by as
much as 69% (table 1).

In summary:

1. PHASE typically provides more-accurate haplotype
estimates than does EM and other existing methods,
when there is “clustering” in the true haplotype
configuration.

2. Such clustering would usually be expected in real
data, on population genetics grounds, whether or
not the data are well modelled by the standard
coalescent.

3. PHASE outperforms EM for the one real data set in
ZPKZ and for the three other real data sets we have
looked at.

4. Most of the comparisons by ZPKZ are based not
on real haplotype data but rather on genotype data
from which haplotype frequencies have been esti-
mated by EM. Haplotype frequencies estimated by
EM will not necessarily exhibit clustering, even if it
is present in the true frequencies. It is thus not sur-
prising—and, perhaps, not directly relevant—that,
in most instances, ZPKZ observe similar behavior
between EM and PHASE.

5. When the true haplotypes do not exhibit clustering,
PHASE does not seem to perform systematically
worse than EM.

Thus, although we admit that there will be exceptions,
PHASE provides more-accurate haplotype reconstruc-
tions than EM for all the real data sets we and ZPKZ
have examined and under conditions which seem likely
for most other real data sets. In other settings, it per-
forms no worse. In this sense, using PHASE is a low-
risk strategy with considerable potential gains; however,
increased accuracy is only one of the advantages of
PHASE. We continue to regard the other advantages as
being at least as important. It remains the case that
PHASE is practicable for much larger problems than is
EM, and it is the only available method that provides
an accurate measure of the uncertainty associated with
phase calls, thus guarding against inappropriate over-
confidence in statistically reconstructed haplotypes.
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