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similar haplogroup spectra but did not overlap with low-
land populations from the Levant. We also found that the 
initial gene pool of the Armenian motherland population 
has been well preserved in most groups of the Armenian 
Diaspora. In view of the contribution of West Asians to the 
autosomal gene pool of the steppe Yamnaya archaeological 
culture, we sequenced a large portion of the Y-chromosome 
in haplogroup R1b samples from present-day East Euro-
pean steppe populations. The ancient Yamnaya samples are 
located on the “eastern” R-GG400 branch of haplogroup 
R1b-L23, showing that the paternal descendants of the 
Yamnaya still live in the Pontic steppe and that the ancient 
Yamnaya population was not an important source of pater-
nal lineages in present-day West Europeans.

Introduction

West Asia, located between Africa, Asia and Europe, was 
a key region for human migrations, including the origin 
and spread of farming. However, populations from many 
areas within West Asia are underrepresented in studies of 
Y-chromosomal variation, particularly compared with the 
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well-studied neighboring Europe. These undersampled 
areas include, among others, Transcaucasia and the Arme-
nian highlands. In this study, “West Asia” means the south-
western part of Eurasia and includes Anatolia, the Levant, 
Mesopotamia, the Arabian Peninsula, the Armenian and 
Iranian plateaus, Transcaucasia, and North Caucasus. The 
term “Transcaucasia”, or South Caucasus, traditionally 
refers to Georgia, Azerbaijan, and sometimes to present-
day Armenia, though in this study we consider the Arme-
nian plateau as a separate region within West Asia.

In Transcaucasia, ancient DNA study has suggested 
genetic continuity since the Mesolithic (Jones et al. 2015). 
In the late Neolithic, the Kartvelian language family origi-
nated in situ (Ruhlen 1987) and split into a set of languages 
and dialects, which are now spoken by many ethnic and 
subethnic groups in Georgia. Y-chromosomal variation 
in these groups has been studied using a restricted set of 
markers in early papers (Semino et al. 2000; Rosser et al. 
2000; Weale et al. 2001; Nasidze et al. 2003), by a wider 
set of haplogroups later (Battaglia et al. 2009; Yunusbayev 
et al. 2012), by Y-STR markers (Tarkhnishvili et al. 2014), 
and haplogroup R1 variation was addressed in (Myres et al. 
2011; Underhill et al. 2010). However, none of these stud-
ies was especially dedicated to Georgians or Transcaucasia.

The next undersampled area, the Armenian highland, is 
the middle link in the chain of West Asian highlands: the 
Asia Minor, Armenian, and Iranian uplands (Lang 1970). 
The Armenian highlands were populated by multiple 
groups, but starting from middle of the first millennia BC, 
historical records indicate that Armenians predominated in 
this area. The Armenian language forms its own old branch 
of the Indo-European linguistic family, and there are two 
major theories explaining the appearance of the Indo-Euro-
peans in this area. The first suggests migration from the 
Eastern Mediterranean and Balkans (Devoto 1962) while 
the second locates the Indo-European homeland itself very 
close to the Armenian highland (Gamkrelidze and Ivanov 
1995).

The historical area of the Armenians was much larger 
than the current boundaries of the Armenian state, and 
included parts of present-day Turkey, Georgia, Azerbai-
jan, Iraq, and Iran (Hovannisian 1997). But starting from 
the 11th century AD, the expansion of the Turks led to 
intensive immigration into the region. Subsequently, many 
Armenian populations migrated in all directions to neigh-
boring areas. As a result of this complex population history, 
most Armenians now live in Diasporas outside the initial 
area, while a less numerous part of the population remained 
in the area of the present-day Armenian state. Because of 
this, to study the genetic composition of the Armenian 
highland, one needs to sample both the present-day popula-
tion of Armenia and the different groups of the Armenian 
Diaspora. The majority of these populations remember 

their geographic place of origin within the historical Arme-
nia, and practice endogamy. Y-chromosomal variation in 
Armenian populations has been studied previously (Weale 
et al. 2001; Herrera et al. 2012; Hovhannisyan et al. 2014). 
Most of these studies, however, concentrated on popula-
tions from present-day Armenia, Turkey, and Levantine 
Diasporas, while Diasporas in North Caucasus, Transcau-
casia and the Black Sea north coast have never been stud-
ied genetically. In addition to the Y-chromosomal pool, the 
autosomal variation in Armenians has been investigated 
using genome-wide arrays (Yunusbay ev et al. 2012; Haber 
et al. 2016) and even ancient DNA data from Armenian 
plateau populations were published recently (Allentoft 
et al. 2015).

The most striking finding from these ancient DNA stud-
ies was the suggested chain of Bronze Age migrations: 
from the Armenian plateau (Allentoft et al. 2015) or Tran-
scaucasia (Jones et al. 2015) to the Yamnaya culture in the 
Pontic steppe, and from there to Central Europe (Haak 
et al. 2015; Allentoft et al. 2015). The Y-chromosomal pool 
of the Yamnaya population consisted almost exclusively of 
haplogroup R1b (Haak et al. 2015; Allentoft et al. 2015), 
though phylogenetic details were not explored in these 
studies. Such information could be retrieved by the com-
plete sequencing of the Y-chromosome. This is a power-
ful approach to refine phylogenies and unravel population 
events (Rootsi et al. 2013; Karmin et al. 2015; Balanovsky 
et al. 2015; Bergstrӧm et al. 2016), and it might shed light 
on the aforementioned migration chain from the perspec-
tive of paternal lineages.

The central question of our study is the broader structur-
ing of the West Asian paternal pool. It did not receive much 
attention in previous works, as West Asian populations 
were typically considered from a European perspective as 
a source for migration into Europe in the Neolithic (Cav-
alli-Sforza et al. 1988; Quintana-Murci et al. 2003; Haber 
et al. 2016) and Bronze Age (Allentoft et al. 2015), or as a 
recipient of migrations from Europe (Zalloua et al. 2008b). 
But the genetic pattern within West Asia itself was rarely 
considered as a subject of research in its own right, though 
recent autosomal data on ancient DNA have revealed the 
extreme variation between different areas of West Asia in 
pre-Neolithic and Neolithic times (Lazaridis et al. 2016; 
Broushaki et al. 2016). The Y-chromosomal patterns in 
present-day populations were so far reported mostly for 
one particular region within West Asia—the North Cauca-
sus. Yunusbayev et al. (2012) revealed west-to-east differ-
ences within the North Caucasus. Balanovsky et al. (2011) 
reported the parallel evolution of Y-chromosomal pools and 
languages in the North Caucasus in general, while Karafet 
et al. (2016) demonstrated the same pattern for the Dag-
estani populations in particular and stressed reduced intra-
population diversity for the upland Dagestan populations, 
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while lowland Dagestani groups appeared to be more sus-
ceptible to gene flow. Beyond the Caucasus, genetic differ-
ences were demonstrated between coastal and inland areas 
within the Levant (El-Sibai et al. 2009).

Here, we present data on the Y-chromosomal variation in 
seven West Asian populations and compiled the most up-to-
date dataset of Y-chromosomal variation in the region. We 
analyzed geographic patterns within the gene pool of the 
West Asian metapopulation. We also compared Armenian 
Diaspora groups with the gene pool in the homeland Arme-
nia. In view of the possible contribution of the Armenian 
plateau populations to the gene pool of the steppe Yam-
naya culture and subsequent migration to West Europe, we 
sequenced a large portion of the Y-chromosome in haplo-
group R1b samples and placed the ancient Yamnaya sam-
ples onto the emerging phylogenetic tree.

Materials and methods

Populations studied

We studied three Georgian and four Armenian populations 
with a total sample size 598 individuals. Supplementary 
Fig. 1 presents the locations and historical overview of 
these populations. A total of 446 Armenian and 152 Geor-
gian saliva or blood samples were collected (Table S1). 
Sampled individuals in all the studied populations except 
the Don Armenians identified all four grandparents as 
members of the given ethnic group, and were unrelated at 
least up to the third degree. For the sampled Don Armeni-
ans, their grandfathers on the paternal line were from this 
population, while other grandparents in some cases were 
non-Armenians. DNA from both blood and saliva was 
extracted using an organic extraction method (Powell and 
Gannon, 2002).

Compliance with ethical standards

All sample donors gave written informed consent and 
the study was approved by the Ethics Committee of the 
Research Centre for Medical Genetics, Moscow, Russia.

Genotyping

The following 40 Y-SNP markers were hierarchically exam-
ined in 598 samples: C-M130, C-M217, E-M35, E-M78, 
E-V13, G-M201, G-M285, G-M406, G-P15, G-P16, 
G-P303, H-M89, IJ-M429, I-M170, I-M223, I-M253, 
I-P215, I-P37, J1-M267, J1-P58, J2-M12, J2-M172, 
J2-M47, J2-M67, J2-M92, J-M304, K-M9, L-M317, 
O-M122, P1-M74, Q-M242, R1a-M198, R1a-M458, 

R-L23, R1b-M269, R1b-M343, R1b-Z2103, R2-M124, 
R-M207, T-M70. All markers were genotyped by real-time 
PCR using custom TaqMan assays (Applied Biosystems). 
All samples were additionally genotyped at 17 Y-STR loci 
using the Yfiler™ PCR Amplification Kit (Applied Bio-
systems). The amplified fragments were analyzed with the 
Genemapper v3.2 program. For all analyses, DYS389I and 
[DYS389II-DYS398I] loci were used, and the DYS385 loci 
were omitted.

Statistical and phylogenetic analyses

Nei’s genetic distances between populations were calcu-
lated using the DJ software (Balanovsky et al. 2008) and 
visualized using MDS and tree diagrams constructed with 
Statistica 6.0 and 10.0 (StatSoft Inc. 2001). Data on 21 
haplogroups were used for MDS analysis of the Arme-
nian populations (C-M217, E-M35, E-M78, E-M123, 
G-M201, G-P15, I-M170, J-M267, J-L136, J-M172(xM67, 
M12), J-M67, J-M92, J-M12, L-M20, N-M231, O-M175, 
Q-M242, R-M198, R-M269, R-M124, T-M184), and a 
slightly different set of 21 haplogroups (C-M130, E-M35.1, 
G1-M285, G2-P287, H-M69, I*-M170, I-P37.2, I-M253, 
J-M267, J*-M172, J-M67, J-M92, L-M11, N-M231, 
O-M175, Q-M242, R-M448, R-M73, R-M269, R-L261, 
T-L206) was used for MDS analysis in the West Eura-
sian context. Data on 12 haplogroups (C-M130, E-M35, 
G-L116, H-M69, I-M170, J-M267, J-M172, L-M11, 
NO-M214, Q-M242, R-M173, T-L206) were used for MDS 
analysis of the West Asian populations.

Cartographic analysis was performed in the GeneGeo 
software using algorithms described previously (Bal-
anovsky et al. 2011; Koshel 2012). When constructing 
haplogroup frequency distribution maps, the weight func-
tion was set to 3 and radius of influence to 10,000 km. 
The cartographic approach provides interpolated frequen-
cies for areas where direct data on the given marker are 
missing, which allows genetic distance maps to be cre-
ated. (Balanovskaia et al. 1999). We calculated the classi-
cal Nei’s statistic of genetic distances (Nei 1975) between 
the haplogroup frequencies in the reference population 
and the haplogroup frequencies in the each node of the 
map grid, using the set of 12 haplogroups listed above.

Calculation of genetic diversity was conducted in Arle-
quin 3.5.1 using SNP haplogroup frequencies.

An Analysis of Molecular Variance (AMOVA) was 
also performed in Arlequin 3.5.1. (Schneider et al. 
2000). Y-STR networks were constructed in Network 
4.6 (Fluxus Engineering, http://www.fluxus.engineer-
ing.com) using the reduced median algorithm, with 
the reduction threshold set to 1, and visualized with 
Network Publisher (Fluxus Engineering, Clare, UK). 

http://www.fluxus.engineering.com
http://www.fluxus.engineering.com
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Expansion times for the haplotype clusters were cal-
culated by the rho-estimator (Forster et al. 1996; Sail-
lard et al. 2000) applying the genealogical mutation rate 
(Gusmao et al. 2005; Sanchez-Diz et al. 2008; Ge et al. 
2009, Ravid-Amir and Rosset 2010; Goedbloed et al. 
2009; Balanovsky et al. 2015) and a generation time of 
30 years (Fenner 2005).

Deep phylogenetic analysis of the Y‑chromosome

We sequenced 11 Y-chromosomes belonging to haplo-
group R-L23. Five East European samples were obtained 
during field trips to indigenous populations, while the 
rest of the samples were from customers of the Yfull ser-
vice (www.yfull.com). Indigenous sample donors gave 
informed consent as described above, and YFull custom-
ers consented for using their data in study of R1b phylo-
geography during email conversations with Yfull admin-
istrators. For sequencing and data analysis, we used the 
approach described previously (Balanovsky et al. 2015). 
Briefly, we used the commercially available “BigY” 
product (Gene by Gene, Ltd) capturing 11,383,697 bp 
of the so-called “Gold Standard regions” of the Y-chro-
mosome to generate sequence and then obtain VCF 
files. The phylogenetic tree was constructed using 
the Phylomurka software (http://phylomurka.source-
forge.net) using SNPs with call rate above 90%. Seven 
ancient genomes from the Yamnaya culture represent-
ing haplogroup R1b (data published by Haak et al. 2015 
and updated in Mathieson et al. 2015) and one ancient 
genome from Iron Age Iran (Broushaki et al. 2016) were 
checked for all SNPs which appeared on our resulting 
tree. The phylogenetic position of each ancient Y-chro-
mosome was estimated to the degree possible given the 
sequencing coverage.

Results

The genetic structure of the West Asian paternal pool

We genotyped 40 Y-SNP and 17 Y-STR markers in 598 
individuals from 4 Armenian and 3 Georgian populations 
(Fig. 1, Table S2) and compiled a dataset of Y-chromo-
somal variation in West Asia including data from both 
this study and 15 previous publications (Abu-Amero 
et al. 2009; Balanovsky et al. 2011; Cadenas et al. 2008; 
Cinnioglu et al. 2004; Di Cristofaro et al. 2013; El-Sibai 
et al. 2009; Flores et al. 2005; Karafet et al. 2016; Grugni 
et al. 2012; Haber et al. 2011; Herrera et al. 2012; Hov-
hannisyan et al. 2014; Sanchez et al. 2005; Zalloua et al. 
2008a, b). The dataset (Table S3) included 6064 Y-chro-
mosomes from 60 West Asian populations. Though some 
papers presented high-resolution data, with the number of 
haplogroups identified ranging from 26 to 84 (Di Cristo-
faro et al. 2013; Herrera et al. 2012; Grugni et al. 2012; 
this study), the combined phylogenetic analysis inevita-
bly decreased it down to 12 haplogroups and 44 popula-
tions (Table S3) when data from the different studies were 
pooled.

The MDS plot based of this dataset (Fig. 2) revealed two 
clusters. The first included Jordanians, Lebanese, Meso-
potamians (Iraqis), Palestinians, Syrians, and populations 
from the Arabian Peninsula. The second included Arme-
nians, Azeri, Kurds, Iranians, and Turks. The latter cluster 
thus unites populations from the highlands, while the for-
mer is made up mostly of populations from the lowlands. 
Though some mountains are also present, for example in 
Syria, for this analysis we considered only the principal 
mountain systems of West Asia: the mountains of Asia 
Minor, Iran, and the Armenian highlands.

To investigate whether or not the highland/lowland con-
trast was indeed the main predictor for clustering, we ran 

Fig. 1  Frequencies of Y-chromosomal haplogroups (percent) in the Armenian and Georgian populations studied. Population names follow Table 
S1

http://www.yfull.com
http://phylomurka.sourceforge.net
http://phylomurka.sourceforge.net
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AMOVA. When the West Asian populations were grouped 
into highland-dwellers and lowland-dwellers (Table S2), the 
highest genetic differentiation, 5.17%, was found (Table 1). 
When the same set of populations was divided into western 
and eastern (using the 43.5° meridian to subdivide them into 
nearly equal areas), the level of differentiation was ten times 
lower (0.56%). When the populations were grouped accord-
ing to the language families (Indo-European, Semitic, and 
Turkic), the variation (4.2%) was higher than the west vs east 
grouping, but lower than the highland vs lowland groups.

While MDS analysis (Fig. 2) visualizes the general pat-
tern of interrelations between populations, plotting genetic 
distances on a geographic map can visualize differences 
between a single reference population and all the others. 
We therefore created a set of 12 maps showing genetic dis-
tances from 12 principal reference populations (Fig. 3). As 
expected, an area of high genetic similarity to the reference 
population (shown in green) on every map was centered 
on the geographic location of the chosen population, but 
these areas vary considerably in size on different maps. The 
smallest area of genetic similarity is seen on the map of the 
Georgian population (Fig. 3a). This finding agrees with the 

small area of the Kartvelian linguistic family and the lack of 
relationship between it and surrounding languages. A large 
area of genetic similarity is seen on the map of the Turks 
(Fig. 3b). The area partly corresponds with the territory of 
the Ottoman Empire from which Anatolian Turks might 
receive gene flow. The map of averaged Armenian popula-
tions demonstrates that the area of highest genetic similar-
ity fits the territory of ancient Armenia (Fig. 3e). This might 
indicate that the gene pool has been preserved in this area, 
though much of it is currently populated by Turks: the Ana-
tolian substratum assimilated by Turkish populations was 
likely represented by western Armenians. Overall, each map 
followed one of the two patterns. Maps of the first pattern 
(Fig. 3a–e) exhibited areas of genetic similarity on the Ira-
nian, Anatolian, and Armenian uplands, while the Arabian 
Peninsula and Levant were marked as genetically distant. 
Maps of the second pattern (Fig. 3g–l), in contrast, exhib-
ited areas of similarity in the Arabian Peninsula while the 
uplands were genetically distant. Maps of the upland popu-
lations (Turks, Armenians, Iranians, Kurds, and Georgians) 
followed the first pattern. Maps of the lowland populations 
(Saudi Arabs, UAE Arabs, Syrians, Jordanians, Lebanese 

Fig. 2  Multidimensional 
scaling plot of West Asian 
populations

Table 1  Genetic variation 
within and between groups 
of West Asian populations 
(AMOVA)

Numbers are percentages

* p value <0.001

Grouping model Among groups Within groups Within populations

Mountain\plain populations 5.1* 3.0* 91.9*

Western\eastern populations 0.55* 5.7* 93.8*

Populations from different linguistic families (Indo-
Europeans. Semitic. Turkic)

4.2* 3.1* 92.7*
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and Palestinians) followed the second pattern. The map of 
the Iraqis (Fig. 3f) is intermediate, though closer to the low-
land pattern. We note that Syrians, being mainly a lowland 
group (Fig. 3h), are genetically much closer to geographi-
cally distant lowland populations like Arabs than to their 
immediate geographical neighbors from the uplands.

The male‑line genetic structure of populations from the 
Armenian plateau and Transcaucasia

Our newly generated data (Fig. 1, Table S2) reveal new 
patterns of genetic structure in the Armenian plateau and 
Transcaucasia.

The genetic diversity within all Armenian and Georgian 
populations was much higher than in the North Caucasus 
(Table S4). However, high-frequency haplogroups could 
still be identified, including G-M285 for the Hemsheni 
Armenians, R-L23 and J-M67 for other Armenian groups, 
while the South Asian haplogroup L-M317 is surprisingly 
frequent (42%) in the Laz population. The phylogenetic 
analyses of these haplogroups are summarized in Supple-
mentary Fig. 2 (R-L23), Supplementary Fig. 3 (J-M67), 
and Supplementary Fig. 4 (L-M317).

Supplementary Fig. 5 shows a comparison of the Arme-
nian and Transcaucasian paternal pools with other West 
Eurasian populations. Populations from Georgia group 
together with the West/Central Caucasus, while the Azeri 
(another Transcaucasian population) and the Armeni-
ans belong to the Middle Eastern cluster. Note that, many 
Armenian populations group together, forming a subcluster 
of their own within the Middle Eastern cluster.

Supplementary Fig. 6 focuses on variation within 
Armenians, including both our new results and published 
data (Table S5). Most Armenian populations are geneti-
cally close to each other while the Hemsheni Arme-
nian population—speaking a specific dialect (Simonian 
2007)—and to a lesser degree Krasnodar, Sasun, and 
Don Armenians are genetic outliers. It is worth noting 
that the main cluster includes both Diaspora populations 
and populations from the Armenian highland; similarly, 
outlier populations comprise both Diaspora and mother-
land groups. AMOVA results confirmed that the differ-
ence between the gene pools of motherland and Dias-
pora Armenians is small (Table 2).

Location of ancient Yamnaya samples on an updated 
haplogroup R1b phylogenetic tree

Haplogroup R1b is found at high frequencies in many 
European populations, and available phylogenetic 
resources are based on full sequences of hundreds of 
Y-chromosomes from West Europeans (www.isogg.
org, www.yfull.com). However, R1b variation in Eastern 

Europe is poorly studied. We focused on this area and 
sequenced 11 Mb of five Y-chromosomes from different 
East European populations, balanced them with an equal 
number of West European samples, and revealed 452 poly-
morphic SNPs with call rates above 90% (Table S6). The 
resulting phylogenetic tree (Fig. 4a) demonstrates that hap-
logroup R-L23 splits into two main branches, R-L51 and 
R-GG400. The former includes West Europeans, while the 
latter comprises exclusively representatives of East Euro-
pean populations. Both branches are of similar age: around 
6 thousand years (Fig. 4a). Note that members of this east-
ern branch R-GG400 came mainly from the steppe area of 
East Europe.

We then placed seven ancient Yamnaya genomes (Haak 
et al. 2015; Mathieson et al. 2015) on this phylogenetic 
tree. These genomes belong to haplogroup R1b, as they are 
derived for M269 or its phylogenetic equivalents PF6434 and 
PF6431: I0231 (M269+, L23+; “+” indicates the derived 
allele), I0370 (M269+), I0429 (M269+, L23+), I0438 
(PF6434+, L23+), I0439 (PF6434+), I0443 (M269+, 
L23+), I0444 (PF6431+). To place these ancient genomes 
more precisely on the R1b tree, we examined the status of 
each SNP present on the tree in each ancient genome. To 
retain the maximum information, we did not apply any fil-
ters apart from phred >30, and used even SNPs called from 
a single read. The number of reads is shown in Fig. 4b, so 
one can assess the reliability of each genotype. Since cov-
erage of the ancient samples was low and their sequenc-
ing was targeted to SNPs extracted from an old version of 
the ISOGG database (ISOGG version 8.22 as of April 22, 
2013), only eight of our SNPs of interest were genotyped 
in the ancient samples (Fig. 4). However, this dataset was 
enough to show that five out of seven Yamnaya genomes 
do not belong to the West European branch (they have the 
ancestral state of L51). The remaining two ancient samples 
were not successfully genotyped by this marker, but they 
are ancestral for markers of major sub-branches (P310 and 
P312). One may conclude that all the Yamnaya genomes 
analyzed here do not belong to the western branch. The alter-
native possibility that they belong to the eastern branch is 
directly supported for at least five samples. Namely, I0231 is 
GG400 derived, Z2103 derived and GG625 derived; I0370 is 
Z2103 derived; I0429 is GG625 derived and Z2105 derived 
(this Z2105 SNP was not typed in our modern samples but 

Fig. 3  Maps of genetic distances from reference West Asian popula-
tions. a Map of genetic distances from Georgians. b Map of genetic 
distances from Turks. c Map of genetic distances from Iranians. 
d Map of genetic distances from Kurds and Lurs. e Map of genetic 
distances from Armenians. f Map of genetic distances from Iraqis. g 
Map of genetic distances from Lebanese. h Map of genetic distances 
from Syrians. i Map of genetic distances from Saudi Arabs. j Map of 
genetic distances from UAE Arabs. k Map of genetic distances from 
Palestinians. l Map of genetic distances from Jordanians

▸

http://www.isogg.org
http://www.isogg.org
http://www.yfull.com
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is known to be equivalent to Z2103); I0438 is also Z2105 
derived; I0444 is Z2103 derived. Among the two remaining 
samples, the phylogenetic position of I0439 remained unre-
solved, while I0443 does not belong to either the western or 
the eastern branch, and might represent a third branch within 
R-L23 which is now rare or extinct. Three Yamnaya sam-
ples belong not only to the eastern branch in general, but to 
a specific sub-branch identified in a present-day sample from 
the Crimean Tatar population: I0231 and I0429 are GG625 
derived, and I0444 is 17146508 derived (this SNP was iden-
tified in the our Crimean Tatar sample but not shown on the 
tree as the call rate was less than 90%). To summarize, the 
ancient Yamnaya genomes published in (Haak et al. 2015; 
Mathieson et al. 2015) do not belong to the main Western 
European branch R-L51, but most do belong to the eastern 
branch R-GG400, which we identified in present-day East 
Europeans.

Discussion

The Y‑chromosomal landscape of West Asia

The West Asian populations that were substantially under-
represented in earlier studies of Y-chromosomal variation 
have received greater attention in the last five years, and 
new data have been published (Di Cristofaro et al. 2013; 
Grugni et al. 2012; Herrera et al. 2012; Karafet et al. 2016; 
the present study). This increased dataset allowed us to 
analyze the West Asian Y-chromosomal pool in a more sys-
tematic way.

Several analyses, including two main patterns of 
genetic distance maps, two clusters on the MDS plot, and 
direct AMOVA testing, revealed that the West Asian pool 
of paternal lineages is structured most strongly by the 
genetic difference between upland and lowland groups. 
The first group includes populations of the Anatolian, 
Armenian and Iranian uplands, while the latter includes 
populations from lowlands of Mesopotamia, the Levant, 
and the Arabian Peninsula. It should be noted, however, 
that genetic clustering of populations into upland and 
lowland groups is unlikely to be explained by environ-
mental differences directly, because the markers ana-
lyzed are thought to be neutral. Instead, we hypothesize 
indirect influences: gene flow occurred mainly between 

populations which live in similar environments and speak 
related languages.

Thus, the link between geographic and genetic land-
scapes might be mediated by differentiation into linguistic 
groups and indeed, the inter-group variation between lan-
guage families is the second largest after variation between 
upland and lowland groups (Table 1). Note that, areas of 
language families themselves follow the upland/lowland 
contrast. It has been hypothesized that Indo-European lan-
guages might have originated in the Anatolian mountains 
(Renfrew 1987; Bouckaert et al. 2012), and populations 
of the Anatolian, Armenian, and Iranian uplands evidently 
spoke Indo-European languages for the last few millen-
nia. Some of them shifted to Turkic languages in medieval 
times, forming the present-day Turks and Azeri. In contrast, 
the West Asian lowlands were probably the homeland for 
Semitic languages (Kitchen et al. 2009), and these lan-
guages are currently spoken in the Levant, Mesopotamia, 
and the Arabian Peninsula.

This structure of the language map was not reshaped 
even by such pronounced historical events as the expansion 
of the (Indo-European speaking) Persians, whose empire 
covered most of West Asia in the 3rd–7th centuries BC and 
the expansion of (Semitic speaking) Arabs whose Caliphate 
included most of West Asia in the 7th century AD. One 
may hypothesize that this stability of the areas of language 
families, and the stable genetic contrast between upland 
and lowland populations, reflects the stability of the West 
Asian population structure which originated in the Neo-
lithic and survived in its principal features till today.

This view is supported by evidence from recent studies of 
ancient DNA in West Asia (Allentoft et al. 2015; Jones et al. 
2015; Mathieson et al. 2015; Lazaridis et al. 2016; Broush-
aki et al. 2016) which, along with extensive autosomal data, 
provided Y-haplogroup spectra for key populations of the 
region (Y-chromosomal results from these studies are sum-
marized in the Table S7). Among then, the Neolithic popu-
lations of Anatolia (ancestral to Neolithic Europeans) carry 
around 50% of haplogroup G2, one out of the 15 Y-typed 
samples represented haplogroup J, but no sample belonged 
to haplogroup E. Similarly, among six Neolithic and Chal-
colithic individuals from the Iranian plateau (Broushaki 
et al. 2016; Lazaridis et al. 2016), three samples represented 
haplogroup G, one sample represented haplogroup J, and no 
sample belonged to haplogroup E. In great contrast, in the 

Table 2  The genetic 
significance of different 
groupings of Armenian 
populations (AMOVA)

* p value <0.001

Percent of variation Among groups Within groups Within populations

Hemsheni\not Hemsheni 11.8* 2.2 86.0

Diaspora\Motherland 2.6* 2.7 94.7

Random grouping in two sets −0.3 4.2 96.1
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Levant, haplogroup E comprised around 50% of Neolithic 
and ancestral hunter–gatherer populations, while haplo-
groups G and J were not found (Lazaridis et al. 2016).

The extreme genetic diversity in Neolithic West Asia 
was highlighted by autosomal data (Lazaridis et al. 
2016; Broushaki et al. 2016). While autosomal markers 

Fig. 4  Phylogenetic tree of Y-chromosomal haplogroup R1b based 
on resequencing. a Tree based on equal numbers of West European 
and East European samples. The colored squares to the right of 
some SNPs show genotypes of seven ancient Yamnaya genomes and 
one ancient genome from Iron Age Iran. A red square means that 
the given genome has the ancestral genotype at this SNP and there-
fore does not lie on the branch defined by this SNP. A green square 
means that the given genome has the derived genotype at this SNP 
and therefore does lie on the branch defined by this SNP. [NCHNG] 

indicates number of changes along the given part of the tree. b Sum-
mary of raw genotypes of ancient genomes. Each letter indicates sin-
gle read in the published BAM files of the ancient genomes (Haak 
et al. 2015; updated in Mathieson et al. 2015; Broushaki et al. 2016). 
Upper case letters designate reads from the forward primer while 
lower case mean reverse primer reads. For example, “Ccc” for the 
IO231 sample at SNP Z2103 shows that this SNP in this genome was 
read three times, once on one strand and twice on the other strand, 
and all three reads identified cytosine (color figure online)
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demonstrated that Neolithic Iranians were equally distant 
from Neolithic Anatolians and Neolithic Levantines, the 
aforementioned Y-chromosomal spectrum of Neolithic Ira-
nians is partly similar to Neolithic Anatolians but does not 
overlap with Neolithic Levantines reported to date. Starting 
from the Bronze Age, most haplogroups tend to appear in 
most subregions of West Asia (Allentoft et al. 2015; Laza-
ridis et al. 2016; Broushaki et al. 2016), in agreement with 
autosomal evidence of intensive mixing starting from this 
epoch (Lazaridis et al. 2016). One may conclude that the 
upland vs. lowland contrast in paternal lineages has existed 
in West Asia at least since the Neolithic epoch, and, despite 
it became much less pronounced due to multiple migra-
tions, this pattern remains the principal feature in structur-
ing the present-day West Asian paternal pool.

Preserving the motherland gene pool in diaspora 
populations

The overall similarity between motherland and Diaspora 
Armenians allowed us to conclude that the Diaspora was 
established from large representative samples, and that 
preserving ethnic identity for centuries has resulted in pre-
serving the genetic legacy of ancient Armenians in their 
emigrant Diaspora populations. Note, however, that this 
conclusion is drawn from paternal lineages, which do not 
trace possible female-mediated gene flow from host popu-
lations; further autosomal data from Diaspora populations 
would be needed to address this question.

The substantial frequency of haplogroup R1a-M198 in 
Don Armenians is a clear sign of admixture with the sur-
rounding host populations. This is not surprising, because 
this Armenian population has for the last few generations 
lived in the suburban area of Rostov city with about 1 mil-
lion ethnic Russians.

The phylogenetic analysis revealed Armenian-specific 
haplotype clusters in each of the three aforementioned hap-
logroups. Ages of the clusters R-L23-β (3000 ± 1200 YBP) 
and J-M67-α (2000 ± 500 YBP) coincide with the time of 
formation of Armenian people in the area, and the age of 
the Hemsheni-specific cluster G-GG265 (1150 YBP, Bal-
anovsky et al. 2015) agrees with the splitting of this Arme-
nian subpopulation (Torlakian 1981).

The genetic relationship of the North Caucasus 
and Transcaucasian populations

North Caucasian populations are genetically much closer 
in their male line to West Asian groups than to any other 
neighboring group, and received their initial gene pool 
from West Asia (Balanovsky et al. 2011; Yunusbayev et al. 
2012). However, within West Asia, the North Caucasian 
groups have the most atypical genetic composition. The 

question arises where Transcaucasian and Armenian gene 
pools find their places, as they are geographically interme-
diate between the North Caucasus and other West Asian 
regions.

We found that the Armenian and Azeri populations 
resembled the main corpus of West Asian populations 
rather than the North Caucasian cluster (Supplemen-
tary Fig. 5). The average haplogroup frequencies in the 
Armenian populations were much more similar to Turks 
(genetic distance d = 0.08) and some Iranian populations 
(d = 0.14) than to neighboring Georgians (genetic distance 
d = 0.59). In contrast, most Transcaucasian populations—
Kartvelian-speaking Laz, Imeretins, eastern Georgians, and 
North Caucasian-speaking Abkhazians—were similar to 
the North Caucasus cluster (Supplementary Fig. 5). Note, 
however, that although these Transcaucasian populations 
are similar to North Caucasian ones according to average 
haplogroup frequencies, they contrast in their haplogroup 
diversity. The Y-chromosomal pool in Transcaucasia is 
heterogeneous (Supplementary Table 4) while most North 
Caucasus populations are characterized by a single pre-
dominant haplogroup (Balanovsky et al. 2011).

The newly identified eastern branch of haplogroup R1b 
links West Asian and ancient Yamnaya gene pools

The carriers of the Yamnaya archaeological culture that 
spread in the Bronze Age to the East European steppes 
were recently shown to be key element in formation of 
present-day European and Central Asian gene pools (Haak 
et al. 2015; Allentoft et al. 2015; Mathieson et al. 2015). 
The autosomal gene pool of the Yamnaya was modeled as 
mix of aboriginal East European populations and migrants 
from West Asia (Haak et al. 2015; Allentoft et al. 2015). 
Since the Y-chromosomal gene pool of the Yamnaya is 
represented mainly by haplogroup R1b (as shown for both 
Yamnaya subpopulations studied to date), the question 
arises of whether Yamnaya Y-chromosomes also originated 
from West Asia.

Our phylogenetic tree of haplogroup R1b clearly 
shows that, apart from well-known R-L51 branch pre-
dominant in West Europe, there is a distinct R-GG400 
branch in East Europe (Fig. 4a). Markers defining this 
eastern branch were revealed in a body of published 
Y-chromosomal sequences (Karmin et al. 2015; Hal-
last et al. 2015; Batini et al. 2015; the present study). 
Though it was noted that Yamnaya Y-chromosomes do 
not belong to the predominant European R1b-L11 branch 
(Poznik et al. 2016) and that an Iranian Iron Age individ-
ual carried the same R1b-branch as Yamnaya individuals 
(Broushaki et al. 2016), the geographic distribution of 
this branch has not been further described. So, here, we 
wish to underscore that this eastern branch R-GG400 is 
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of equal phylogenetic level and similar age to the branch 
R-L51, but has a contrasting geographic distribution. The 
distribution of the western R-L51 branch is well known: 
it comprises more than half of the West European pater-
nal pool and is found at lower frequencies in East Europe 
(Myres et al. 2011). Data which we collected on the 
geographic distribution of the eastern R-GG400 branch 
are scarce, but place its main area on the East European 
steppes and West Asia (Fig. 4; see also Figure S38 in 
Karmin et al. 2015). The frequency of this eastern branch 
has so far been estimated only in a few populations: it 
comprises 5% in Greeks from Cyprus (Voskarides et al. 
2016), 0–5% in different Georgian and 2–20% in dif-
ferent Armenian populations (this study). Large-scale 
population genotyping surveys have yet to be reported to 
reconstruct the phylogeography of R-GG400 and its sub-
branches in detail.

The currently available dataset does not contradict the 
hypothesis that R-GG400 marks a link between the East 
European steppe dwellers and West Asians, though the 
route and even direction of this migration is disputable. It 
does, however, demonstrate that present-day West Euro-
pean R1b chromosomes do not originate from the Yamnaya 
populations analyzed in (Haak et al. 2015; Mathieson et al. 
2015) and raises the question of their origin. A Bronze Age 
origin is more likely than a Neolithic one (Balaresque et al. 
2010), but further ancient DNA studies may be necessary 
to identify this source.
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