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SINEs and LINEs are short and long interspersed
retrotransposable elements, respectively, that invade new
genomic sites using RNA intermediates. SINEs and LINEs are
found in almost all eukaryotes (although not in Saccharomyces
cerevisiae) and together account for at least 34% of the
human genome. The noncoding SINEs depend on reverse
transcriptase and endonuclease functions encoded by partner
LINEs. With the completion of many genome sequences,
including our own, the database of SINEs and LINEs has
taken a great leap forward. The new data pose new questions
that can only be answered by detailed studies of the
mechanism of retroposition. Current work ranges from the
biochemistry of reverse transcription and integration in vitro,
target site selection in vivo, nucleocytoplasmic transport of the
RNA and ribonucleoprotein intermediates, and mechanisms of
genomic turnover. Two particularly exciting new ideas are that
SINEs may help cells survive physiological stress, and that the
evolution of SINEs and LINEs has been shaped by the forces
of RNA interference. Taken together, these studies promise to
explain the birth and death of SINEs and LINEs, and the
contribution of these repetitive sequence families to the
evolution of genomes. 
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Abbreviations
AP apurinic/apyrimidinic
EN endonuclease
LINE long interspersed repeated sequence
ORF open reading frame
pA polyadenylation site
pol RNA polymerase 
RNAi RNA interference
RT reverse transcriptase
SINE short interspersed repeated sequence
SRP signal recognition particle

Introduction
The dawn of the genomic age has transformed every aspect
of biology, and the study of retrotransposable elements is
no exception. Until complete genomic sequences began to
appear in 1997, whoever studied SINEs and LINEs (short
and long interspersed repeated sequences, as rhymefully
named by Singer [1]) had to worry that any individual
retrotransposon sequence might be misleadingly different
from other members of the same sequence class. For
example, with a database in 1981 of only a few dozen
Alu sequences (the most abundant SINE in the human
genome), no firm conclusions could be drawn about the
remaining 1,090,000 genomic Alu elements [2•• ] whose

existence was known solely from DNA reassociation
kinetics. Sampling 0.002% of the genome simply does not
inspire confidence. 

Now, with many genomic sequences nearing completion,
we can examine essentially all members of a particular
class of SINEs or LINEs in a particular genome, asking
questions and drawing conclusions that should withstand
the test of time. This is the good news.

Genomic anatomy rarely reveals mechanism, which is best
investigated in the cold room or the tissue culture hood. So
for now, the most that can be said for the genome
sequences of yeast, Arabidopsis, flies, worms, mice and
humans is that they have sharpened our questions about
SINEs and LINEs without really answering any of them. 

Historically, the first breakthrough from genome structure
to molecular mechanism came in 1993, when the R2 protein
of the insect retrotransposon R2Bm was shown to nick the
target DNA to generate a primer for reverse transcription
of the R2Bm RNA in situ [3]. This brought retroposition
within reach of conventional divide-and-conquer bio-
chemistry. The second breakthrough came in 1996, when
high-frequency retroposition of a human LINE element
was achieved in cultured somatic cells [4]. This meant that
retroposition could be dissected using the powerful
methods of surrogate somatic cell genetics, including
selection for rare events. Together, these two breakthroughs
dispelled any residual fears that retroposition might occur
only in experimentally inaccessible germ line cells [5] or
might occur less frequently than the typical research grant
must be renewed.

SINEs and LINEs: a parts list and owner’s 
manual
LINEs are autonomous retroelements; SINEs are their
dependants. As shown in Figure 1, LINEs contain an
unusual internal promoter for RNA polymerase II (pol II),
one or two open reading frames (ORFs) (where the second
ORF is accessed through a frameshift), and a 3′-terminal
polyadenylation site (pA) lacking the usual downstream
efficiency element [6]. ORF1 encodes an essential protein
of unknown function [7•• ] while ORF2 encodes a bifunc-
tional polypeptide with both reverse transcriptase (RT)
and DNA endonuclease (EN) activity. 

EN is upstream of RT in older LINEs (e.g. R2, CRE1
and -2, SLACS, CZAR, Dong and R4), and downstream
of RT in younger LINEs (e.g. L1, Jockey and CR1) [8].
The downstream EN module in older LINEs is a
sequence-specific restriction-like EN; the upstream EN
module in younger LINEs is an apurinic/apyrimidinic
(AP) endonuclease that usually, but not always, lacks
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sequence-specificity [9]. The polyadenylated LINE
transcript is exported to the cytoplasm (presumably like
any other intron-less mRNA) [10,11] and translated.
However, the nascent RT preferentially binds in cis to
the LINE RNA encoding it [7•• ,12,13]. The resulting
ribonucleoprotein (RNP) complex of a functional LINE
RNA with the bifunctional RT/EN polypeptide then
enters the nucleus, where it initiates a process called
‘target-primed reverse transcription’. In this process, the
EN component of the RT/EN polypeptide nicks the target
DNA to generate a 3′-hydroxyl group, which is used by
the RT component of the RT/EN polypeptide to prime
reverse transcription of the LINE RNA in situ on the
chromosome [3]. Thus, the LINE cDNA never exists free
of the chromosome, as originally postulated [14]. 

Moreover, the R2 endonuclease is activated by RNA,
presumably to prevent it from wreaking freelance chromo-
somal damage [15]. Following reverse transcription, the
DNA repair machinery present in somatic [7•• ], as well as
germ line, cells mends the broken DNA, creating a staggered
break and generating flanking target site duplications of
7–20 nucleotides. Most LINEs are 5′ truncated, an observation
commonly attributed to incomplete reverse transcription.
But other interpretations are possible. A newly retroposed,
full-length LINE element is ‘fertile’ — that is, capable
of further rounds of retroposition — because both the
internal pol II promoter at the 5′ end of the LINE, and
the fully internal polyadenylation signal at the 3′ end,
guarantee that the new element will be transcriptionally
competent to produce an essentially identical polyadeny-
lated LINE mRNA.

SINEs are similar to LINEs, but shorter, simpler, and
almost certainly dependent on LINE RT/EN functions

for retroposition. SINEs have an internal promoter for
RNA polymerase III (pol III) instead of pol II, a 3′-terminal
A-rich tract instead of the pol II polyadenylation signal (or
occasionally dinucleotide or trinucleotide repeats), contain
no significant ORFs, but otherwise function much like
LINEs. A functional SINE must be free of any olig-
othymidylate tracts (where n?4) which can function as
pol III termination signals. As a result, SINE transcription
continues through the A-rich region until it encounters a
random oligothymidylate tract downstream. 

The A-rich tract of SINE elements is presumed to function
as the template for initiation of reverse transcription,
because sequences downstream of the A-rich region are
not retroposed; however, this has not been proven. A
newly retroposed SINE element is ‘fertile’ because the
internal pol III promoter and the 3′-terminal A-rich tract
together guarantee that the new element will be tran-
scriptionally competent to produce new SINE RNAs that
are essentially identical to the original. 

The best evidence that SINEs piggyback on LINE
RT/EN functions is the discovery that SINEs sometimes
share common 3′-terminal sequences with ‘partner’ LINEs
[16]. This would facilitate ‘retropositional parasitism’ of
SINEs on LINEs by increasing the efficiency with which
the LINE RT recognises the 3′ end of a cognate SINE
[17,18•• ]. Not surprisingly, some SINEs are truncated
LINEs, such as those arising from the RTE class of retro-
transposons [19], but truncated LINEs are not necessarily
SINEs [20].

No discussion of SINEs and LINEs would be complete
without mentioning ‘retropseudogenes’ (also known as
‘processed genes’) — complete or 5′-truncated copies of
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Figure 1

A parts list for SINEs and LINEs.
+1 represent the transcription start site.
AP-EN, apurinic/apyrimidinic endonuclease;
pA, polyadenylation signal lacking downstream
efficiency element; pol II and pol III, RNA
polymerase II and III promoters; R-EN,
restriction-like endonuclease; RT, reverse
transcriptase. Solid black arrows represent
7–20 base pair target-site duplications.
Dashed lines indicate deletion of intron
sequences in retropseudogenes derived from
mature mRNA. Only the most common forms
of LINE gene organization are shown; variants
exist. Note that some SINEs have 3′-terminal
dinucleotide or trinucleotide repeats instead
of A-rich tails, and that partner SINEs and
LINEs share common 3′-terminal sequences.
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mature mRNAs flanked by short target-site duplications of
7–20 nucleotides. As long suspected, and now demonstrated
experimentally [7•• ], retropseudogenes are generated
when the LINE RT/EN binds a mature (presumably
cytoplasmic) mRNA instead of a LINE or SINE RNA.
The resulting retroposed mRNA lacks introns, but has
gained a 3′-terminal poly(A) tail, added post-transcriptionally
during maturation of the mRNA precursor. Unlike SINEs
and LINEs, retropseudogenes are infertile (‘dead on
arrival’) because they lack an internal promoter. Shared
3′-terminal sequences help SINEs exploit LINEs by
overcoming the natural cis preference of LINE RTs for the
RNAs that encoded them [17,18•• ]. Although generation
of retropseudogenes depends on random binding of the
LINE RT to mRNAs, retroposition is apparently driven
forward by the overwhelming abundance of potential
mRNA templates, and perhaps also by the ability of
3′-terminal poly(A) tracts to facilitate initiation of reverse
transcription by template–primer slippage [21]. 

Crossing the great divide: nucleocytoplasmic
transport
The study of SINEs and LINEs will not get far without
some serious cell biology, because all available evidence
indicates that the RNA intermediates for retroposition of
SINEs, LINEs and retropseudogenes are captured — if
not actually reverse transcribed — in the cytoplasm. LINE
RT/EN grabs LINE mRNA primarily in cis in the
cytoplasm [13], and carries the mRNA into the nucleus as
a RNP, as is also the case for retroviruses [22]. The almost
complete absence of retropseudogenes containing unexcised
introns (rat preproinsulin 1 being one of the few exceptions
[23,24]) provides further evidence that the LINE RT/EN
first binds RNA intermediates in the cytoplasm. However,
it remains to be seen whether SINEs such as primate
Alu elements [25] and rodent ID elements [5], which are
derived from cytoplasmic RNAs, must retropose through
cytoplasmic RNA intermediates.

If the RNA intermediates for retroposition are cytoplasmic,
SINEs and LINEs may have always been under selection
for cytoplasmic stability as well as efficient nuclear export
(an active process driven by a GTP gradient and requiring
specific cargo-binding proteins [10,11,26,27]). Interestingly,
retroposition of dimeric human Alu elements derived from
the 7SL RNA component of the signal recognition particle
(SRP) appears to be facilitated by binding of two of the six
SRP proteins (SRP9 and SRP14) to the right monomer,
possibly to assure nuclear export and/or stabilize full-length
Alu RNAs in the cytoplasm [25]. Thus, cytoplasmic RNA
retroposition intermediates may evolve to bind proteins
that guarantee nuclear export and/or cytoplasmic stability,
while avoiding proteins that would interfere with reverse
transcription or nuclear import. For example, the nuclear
export apparatus only recognises mature tRNA with
correct 5′ and 3′ ends [28]. This could be one explanation
for why SINEs derived from tRNA often retain a recog-
nisable tRNA fold [29,30]. Another explanation might be

that the tRNA fold, like the shared 3′ terminus with a
partner LINE, facilitates binding of the LINE RT/EN
[17]. Similarly, binding of poly(A) binding proteins [31] to
the poly(A) tail of LINEs, and possibly the 3′-terminal
A-rich tract of SINEs [32], may facilitate nuclear export or
cytoplasmic stability. 

LINEs: a maelstrom of modules?
A phylogeny of the individual parts (the LINE EN and
RT functions) is not necessarily a phylogeny of the whole
because retroelements, like viruses and organismal genomes,
are a ‘maelstrom of modules’ [33]. The most comprehensive
phylogeny to date is extremely revealing [34,35•• ]: all
LINE-like elements (or ‘non-LTR retrotransposons’)
share a common ancestral RT, most closely related to the
RT of certain group II introns. The earliest LINE-like
elements possessed a sequence-specific restriction-like
endonuclease downstream of the RT module. This
downstream restriction endonuclease was later replaced
by an upstream AP EN, and still later some of these
elements acquired an RNase H domain downstream of the
RT. All of the restriction-like endonucleases are sequence-
specific [8], but the AP EN can be nonspecific or, more
rarely, sequence-specific, as in the Bombyx R1Bm element
[36]. Perhaps when we learn the function of the second
ORF that is present only in the younger elements, we will
begin to understand whether LINEs were assembled from
pre-existing cellular parts, or cellular functions were
devised for pre-existing LINE or group II intron functions.

A SINE is born
Most but not all SINEs are derived from tRNA; exceptions
include rodent ID elements derived from neuronal
BC1 RNA, also found in male germ cells [5], and primate
Alu elements derived from the ubiquitous 7SL RNA
component of the SRP [37]. However, any SINE that too
closely resembles the parent RNA could function as a
dominant-negative mutant, or be sequestered from
retroposition by interaction with proteins that normally
bind the parent RNA. Thus, as mentioned above, the trick
may be to retain sufficient resemblance to the parent
RNA to bind proteins that are important for transport or
stability, but not those proteins that would interfere with
retroposition. Certainly, preservation of the internal pol III
transcription factor binding sites (the A and B boxes) is not
sufficient to explain preservation of a recognisable tRNA
fold. We also can’t explain why an abundant pol III
transcript like 5S ribosomal RNA has apparently never
given rise to a SINE; why primate Alu elements are dimeric
while the vast majority of mammalian SINEs are
monomeric; why the V-SINE (vertebrate-specific SINE)
superfamily maintains a highly conserved core sequence
sandwiched between the tRNA-like 5′ end and the
LINE-like 3′ end [18•• ]. We can’t even explain why there
are no LINEs or SINEs in the budding yeast S. cerevisiae,
despite an abundance of retroviral-like elements and the
presence of L1-like retrotransposons in the pathogenic yeasts
Candida albicans and Cryptococcus neoformans [38,39]
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For SINEs that share 3′-terminal sequences with a partner
LINE and persist by ‘retropositional parasitism’ [17,18•• ],
it is not difficult to imagine how the SINE got its tail: the
LINE RT would generate a short cDNA (equivalent to a
retroviral ‘strong stop’ cDNA) by copying the 3′-terminal
LINE RNA sequence. This cDNA would then switch
from the LINE template to the RNA parent of the
SINE-to-be, thus attaching a RT landing pad to an RNA
carrying an internal pol III promoter. One can also imagine
that 3′-terminal identity with a partner LINE enables
SINEs to more efficiently pirate the LINE RT, a cis-acting
enzyme designed to keep functional LINEs alive by
ignoring RNAs derived from the vast excess of moribund
or nonfunctional elements [7•• ,13]. However, ‘retropositional
parasitism’ is not risk-free: the human SINE MIR, which
shares 50 bases of 3′-terminal sequence with the partner
LINE2 element, was doomed when LINE2 (L2)
became extinct [2•• ].

Other SINEs, such as primate Alu sequences, lack partner
LINEs, perhaps because the L1 RT binds tightly to the
A-rich tail and is less dependent on auxiliary or adjacent
RNA sequences. Only careful studies of LINE RT
activities will confirm, modify or enable us to reject
these stories.

Knowing when to stop: dodging host genes
and seeking safe havens
All retrotransposable elements are insertional mutagens
that can cause disease or disability by inserting near or
within essential genes [40,41]. As a result, retroelements
face an existential dilemma [42]. Unlike infectious viral
elements that can afford to kill one host in the process of
infecting others, noninfectious retrotransposable elements
are captive but rebellious passengers within the host
genome [42]. (We ignore the possible horizontal transfer of
SINEs and LINEs as stowaways in retroviral particles
[43–45].) If the retroelement multiplies too recklessly,
it will kill the host; but if it does not multiply fast enough
to offset natural loss and decay, it cannot survive. This
balancing act pits the ingenuity of the retroelement against
the ingenuity of the host; the goal is to overrun, but not
overcome the host. The abundance of dead retroelements
littering the human genomic landscape provides mute
testimony regarding this endless battle [2•• ]; however, we
do not understand why one family of LINEs (say, L1)
succeeds another (say, L2), or what enables one family of
SINEs or LINEs to replicate explosively, while others eke
out a minimal existence without vanishing into oblivion.

New data from the (nearly) complete human genome
sequence underscore the magnitude of the problem:
1,500,000 SINEs (70% of them Alu elements) account
for 13% of our genome, and 850,000 LINEs for another
21% of the genome, giving a grand total of 34% trans-
posable elements [2•• ]. Moreover, the distribution of
transposable elements is inexplicably uneven, best
exemplified by a 525 kb segment of chromosome Xp11,

where the density of retroposable elements is 89%, and the
four human homeobox gene clusters (HoxA, HoxB, HoxC,
and HoxD), where the density of interspersed repeats is
less than 2%. It is a wonder that our genes have survived
the bombardment.

The choice of integration site is a difficult one for any
transposable element: On the one hand, it is advantageous
to avoid integration in highly active genomic regions where
major damage might be done [46•]. On the other hand, it is
disadvantageous to be sequestered in inactive regions
where transcriptional activity is low. One solution is to
target tandemly repeated genes (rRNA, trypanosome and
nematode trans-spliced leaders [47,48]) or dispersed
multigene families (tRNA). For example, the insect R1
and R2 LINE elements carry a sequence-specific
endonuclease that cuts within the rDNA repeat unit [36].
With excess rRNA coding capacity provided by several
hundred tandem repeats of the rDNA, the host can endure
a significant burden of insertions. Yet the R1 element is
scarce in Bombyx rDNA where concerted evolution or other
forces select against integrants [49•], while the very same
R1 element is superabundant in Drosophila rDNA where it
may interrupt 50–70% of the tandem rDNA repeats [50].

Another strategy — not yet shown for a SINE or LINE — is
to land near genes, but not in them. In yeast, the Ty3
endogenous retrovirus targets the 5′ flanking region of
tRNA genes by a protein–protein interaction between the Ty3
integration machinery and components of the transcription
factor TFIIIB [51,52]. tRNA gene expression is apparently
unaffected, but the Ty3 element is thereby guaranteed a
home in a constitutively open chromatin region.

Mysteries of the genome: inverse distribution
of SINEs and LINEs
Curiously, human SINEs (Alu elements) are concentrated
in gene-rich GC-rich regions of the genome, and LINEs in
gene-poor AT-rich regions [2•• ,53•• ], supporting previous
evidence for the existence of isochores (extended regions
of compositionally or functionally similar DNA) [54,55•].
This inverse distribution is unlikely to reflect preferential
integration of SINEs in GC-rich regions, because SINEs
are widely believed to pirate the LINE RT/EN protein,
and also unlikely to reflect preferential loss from AT-rich
regions, as these appear to tolerate high levels of ‘junk’
DNA. Thus, SINEs may be preferentially retained in
GC-rich regions (perhaps positively selected to augment
the stress response, as described below [56,57,58•• ]). Or
LINEs might be preferentially lost from GC-rich regions
(perhaps because the 20-fold larger LINEs are more
dangerous insertional mutagens [46•]). 

Alternatively, an excess of L1 elements on the human Y
chromosome, and to a lesser extent on the human X
chromosome, suggests that LINEs if not SINEs may be
purged by recombination between homologues containing
occupied and empty target sites [46•]. Although these gene

346 Nuclear and gene expression



conversion events would have to be directional to purge
newly integrated retrotransposable elements instead of
fixing them, recombinational differences between GC-rich
and AT-rich regions of the genome might then explain the
inverse distribution of SINEs and LINEs.

Another possible explanation for the inverse genomic
distribution of SINEs and LINEs would be differential
cell cycle regulation at one (or more) of the many steps
in the retroposition process. Among the steps that could
be cell-cycle regulated are transcription of the RNAs
themselves [59], nuclear export and cytoplasmic stabilization
of the RNAs, nuclear import of the RNAs or RNP 
intermediates, differential chromatin condensation 
(preferential decondensation of gene-rich GC-rich regions
may facilitate integration), different DNA replication
schedules (gene-rich GC-rich DNA is usually replicated
earlier than gene-poor AT-rich regions), and differential DNA
repair (preferential decondensation of gene-rich GC-rich
regions may render the underlying DNA more susceptible
to damage, with integration as a byproduct or consequence).
Although there is no direct evidence that chromatin
structure can affect the integration of SINEs and LINEs,
there are retroviral precedents: nucleosomes generally
block, but occasionally enhance, mammalian retroviral
integration [60] and protein–protein interactions are
responsible for targeting Ty3 to tRNA promoters [51,52]
and Ty5 to silent chromatin [61].

The inverse distribution of SINEs and LINEs could also
be influenced by differential DNA methylation within
gene-poor AT-rich and gene-rich GC-rich regions, but
there are conflicting reports of the effect of CpG
methylation on SINE and LINE transcription. Natural
CpG methylation in HeLa cells inhibits Alu transcription,
and inhibition is relieved by treating the cells with the
demethylating drug 5-azacytidine [32]. In contrast, artificial
CpG methylation inhibited L1 but not Alu transcription
in both transient and stable expression assays when the
methylated CpG binding protein MeCP2 was over-
expressed and/or targeted to the SINE or LINE reporter
constructs by a Gal4 DNA-binding domain [62•]. MeCP2
is a transcriptional repressor that tethers the Sin3A–HDAC1
and Sin3A–HDAC2 histone deacetylase complexes to
CpG-methylated DNA.

The taming of the shrewd: SINEs, LINEs and
RNA interference
RNA interference (RNAi) is a form of post-transcriptional
gene silencing triggered by double-stranded RNA. It is
found in many organisms, including flies [63,64], worms
[65] and mammals [66]. In flies [67•• ], worms [68,69] and
vertebrates, including humans [67•• ], RNAi appears to be
a normal regulatory mechanism in which single-stranded
‘micro RNAs’, around 22 nt in size and derived from
somewhat larger developmentally controlled RNA pre-
cursors, anneal with target mRNAs and trigger their
degradation. RNAi also plays a protective or defensive role,

and has been implicated in silencing transposons [70–72]
and viruses [73–75] in fungi and plants.

SINEs and LINEs appear to be subject to RNAi [76,77•• ].
Although SINEs and LINEs can be independently
transcribed from internal promoters, co-transcription of
SINEs and LINEs from external promoters will generate
antisense as well as sense transcripts. These sense and
antisense transcripts of SINEs and LINEs could in
principle anneal to form double-stranded RNAs capable
of triggering the degradation of any other transcripts
containing SINE and LINE sequences, whether inde-
pendently transcribed from internal SINE and LINE
promoters or co-transcribed as part of larger RNAs. To
explain how mRNAs and mRNA precursors containing all
or part of a SINE or LINE sequence can survive attack by
RNAi, one might speculate that divergence between any
pair of SINE or LINE sequences is usually too great to
trigger RNAi. In any event, RNAi may have played a role
in the evolution of SINEs and LINEs, as it is part of the
cellular environment in which SINEs and LINEs arise and
propagate. We do not know whether RNAi evolved first as
a defensive or developmental regulatory mechanism, but an
extreme view would be that SINEs and LINEs could not
flourish until RNAi evolved to protect the cell from them.

Accidental travellers
SINEs and LINEs, no less than retropseudogenes, can
provide the ‘seeds of evolution’ [78]. Perhaps the single
most conspicuous demonstration of the power of retroposi-
tion is the functional, tissue-specific human pgk-2 locus, an
autosomal phosphoglycerate kinase retrogene expressed
during spermatogenesis and lacking the ten introns of the
ubiquitously expressed X-linked pgk-1 gene. How PGK-2
acquired both a promoter and tissue specificity is an
interesting question. Was it a lucky insertion into a tissue-
specific promoter or chromosomal region, or was the
specificity an accident that was then perfected by sub-
sequent selection? Almost equally remarkable is the rat
preproinsulin I gene, a functional retroposon which, having
lost one of the two ancestral preproinsulin II introns, may
be the sole instance in which a partially spliced mRNA
appears to have served as the RNA intermediate [23]. 

Instances of useful genomic mayhem created by 
retroposition of SINEs and LINEs are still relatively sparse
(see http://exppc01.uni-muenster.de/expath/alltables.htm),
but more will surely emerge from detailed analysis of
the human genome sequence. For example, L1s can
co-transduce 3′ flanking sequences [79,80], and integration
of Alu elements in reverse orientation can introduce
fortuitous 3′ splice sites that are capable of diversifying
the spectrum of alternatively spliced mRNAs (R Sorek and
G Ast, personal communication). There is also one report
of a rodent B2 SINE that carries a pol II promoter [81•].
Remarkably, this portable pol II promoter does not interfere
with the internal pol III promoter function required for
B2 retroposition, and in one case the mobile pol II promoter
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drives transcription of a typical gene encoding the laminin
variant, Lama3.

Are SINEs useful parasites?
From the moment of their discovery, SINEs and LINEs
were treated as genomic parasites [82], an internal infection
that could be kept in check but rarely cured. However,
evolution, like science, is rife with reversals of fortune.
The first group to sequence human Alu elements has now
proposed that SINEs, once considered a source of genomic
stress, may in fact help ease cells through physiological
stresses that induce Alu transcription such as heat shock
and translational inhibition [56,57,58•• ]. The induced
SINE transcripts would then bind to PKR kinase, blocking
the ability of this kinase to inhibit translation by phos-
phorylating the initiation factor eIF2α. 

Although initially greeted with scepticism, the view that
SINEs may lend us a helping hand has received significant
support from an unexpected direction: the International
Human Genome Sequencing Consortium argued, in
presenting the first draft of the human genome sequence
[2•• ], that over-representation of Alu elements in gene-rich
GC-rich DNA is most easily explained if ‘SINEs actually
earn their keep in the genome’ by positive selection, as
proposed by Schmid [56,57,58•• ]. Although the jury is still
out, at least we can now look forward to a fair trial.

Update
A recent publication [83] suggests that methylation may be
responsible for the mysteriously uneven genomic distribution
of SINES, perhaps by affecting the insertion and/or deletion
of the elements.
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