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Abstract Increased demands for water affect its

quality and availability and threaten biodiversity. In

freshwaters, the Chironomidae (Diptera) repre-

sents * 50% of macroinvertebrate individuals and

have great potential to improve ecological assessment

tools. Incorporating trait-based approaches in those

tools can further improve how we assess the effects of

human disturbances on aquatic macroinvertebrate

assemblages. Given that chironomid genera have

different degrees of sensitivity to anthropogenic

disturbances, we expected that composition, structure

and functional characteristics of chironomid genera

would be negatively affected by anthropogenic

disturbances in a neotropical savanna river basin.

We used nine traits in 32 categories related to

Chironomidae functional roles. Out of 6147 individ-

uals distributed in three subfamilies, we identified 52

chironomid genera collected from 30 randomly

selected stream sites. The index of functional diver-

gence was lower in places with greater anthropogenic

disturbance of riparian vegetation. A RLQ matrix

analysis revealed a significant relationship between

genera abundance and environmental variables as well

as with biological traits. We observed a positive

relationship between Tanypodinae, which are mainly

engulfer predators, with average embeddedness, %

sand and catchment pasture. Three Chironomidae

genera (Stenochironomus, Endotribelos and Beardius)

were positively related to miner habit, herbivore

feeding strategy and larger body size. We found that

physical habitat structure and food resources were the
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most important factors structuring Chironomidae

assemblages in the study sites and that chironomid

genera were effective for assessing basin ecological

status.

Keywords Traits � Macroinvertebrates �
Monitoring � Ecological assessment � Cerrado �
Bioindicators

Introduction

Rivers are important because they provide ecosystem

services, such as water supply for domestic, industrial

and agricultural use, power generation, navigation and

recreation (Callisto et al. 2019b). In addition, they are

home to a great diversity of species (Strayer and

Dudgeon 2010). Increasing demands for water affects

its quality and availability and threatens aquatic

biodiversity (Gangloff et al. 2016; Reid et al. 2018).

Important steps for preserving water quality and

maintaining biodiversity are identifying human pres-

sures and stressors, and understanding how they affect

the conditions that favor maintaining biodiversity

(Sánchez-Bayo and Wyckhuys 2019). In some

regions, this becomes particularly important, such as

in the neotropical savanna (Cerrado). Although this

biome is home to important springs and hydrographic

basins, housing high biodiversity and endemism and

covering 2million km2, it is one of the most threatened

biomes in South America (Strassburg et al. 2017;

Latrubesse et al. 2019).

Those threats cause the simplification of aquatic

habitats, such as the homogenization of the riverbed

by siltation, which alters the structure of aquatic

communities (Collen et al. 2014; Agra et al. 2021).

Benthic macroinvertebrate assemblages respond to

environmental changes resulting from anthropogenic

activities, which is why they are commonly used in

aquatic environmental assessment studies (Karr and

Chu 1999; Ruaro et al. 2020). These organisms exhibit

preferences regarding food acquisition and type of

trophic resources, physical habitat preferences and

water quality (Ferreira et al. 2015), and they respond to

aquatic ecosystem disturbances through changes in

their structure, composition and function. Those

characteristics give biological indicators an advantage

over traditional water quality assessments, which do

not detect the effects of altered flow regimes and

physical habitats (Karr 1981). Studies that use bio-

logical indicators and assessments of site and land-

scape variables have been more robust and have better

responses (Roque et al. 2010; Herlihy et al. 2020).

In freshwaters, the Chironomidae repre-

sent * 50% of macroinvertebrate assemblage indi-

viduals (Serra et al. 2016) and have great value as

bioindicators because they are widely distributed,

taxonomically and functionally diverse, and respon-

sive to environmental changes (Rosenberg 1992; Puntı́

et al. 2009; Nicacio and Juen 2015). Chironomids play

fundamental roles in processing organic matter,

scraping leaf detritus (Callisto et al. 2007), consuming

fine particles of organic matter (Callisto and Graça

2013) and transferring energy and nutrients to the

invertebrates, fish and birds that prey upon them (Serra

et al. 2016). Despite their ecological importance and

diversity in most freshwater ecosystems (Nicacio and

Juen 2015), chironomid larvae are usually only

identified to family or subfamily in ecological studies

(Poff et al. 2006). However, if identified to genus, they

have the potential to improve the signals provided in

ecological assessments, because of the diversity of this

family that includes both tolerant and sensitive genera

(Morais et al. 2010; Serra et al. 2016). Although

chironomids have great potential as bioindicators,

their functional responses remain little explored in the

neotropics (Gomes et al. 2018; Saulino and Trivinho-

Strixino 2018a, b; Jovem-Azevêdo et al. 2019; Pereira

et al. 2020). This is because their identification to

genus is difficult and time-consuming, especially in

tropical aquatic ecosystems (Rosenberg 1992; Roque

et al. 2010).

Trait-based approaches have been successfully

used to assess the effects of anthropogenic distur-

bances on aquatic macroinvertebrate assemblages

(Dolédec and Statzner 2010; Kuzmanovic et al.

2017; Castro et al. 2018; Firmiano et al. 2021),

including some focused on Chironomidae assem-

blages (Serra et al. 2016, 2017; Jovem-Azevêdo et al.

2019). Traits are generally defined as any measurable

characteristics at the individual level that directly or

indirectly affect general fitness or performance (Violle

et al. 2007). Change in performance can affect

population demographics, which in turn can affect

the structure and dynamics of the community and the

functioning of the ecosystem (Villéger et al. 2008).

Different environmental factors act as filters by
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selecting species with a set of traits that determine the

ability of individuals to coexist in a local community

and allow them to persist under specific environmental

conditions (Poff et al. 2006; Castro et al. 2018).

Anthropogenic stressors are additional environmental

filters that can alter the expected functional structure

of assemblages observed under natural conditions

(Floury et al. 2017). Anthropogenic disturbances can

cause instability in habitat structure and select organ-

isms that have specific functional characteristics and

high abundance, such as resistant and generalist taxa

(Poff 1997; Statzner and Bêche 2010; Li et al. 2019).

Identifying assemblage traits filtered by specific

environmental conditions enable mechanistic under-

standing of cause–effect relationships, indicating the

stressors most likely responsible for biological impair-

ment (Berger et al. 2018; Firmiano et al. 2021). One of

the tools used is the functional diversity approach,

which quantifies the value and range of characteristics

of the organism that influence its performance, and

therefore ecosystem functioning. Furthermore, con-

sidering that traits are stable across large spatial

extents and natural environmental gradients, they offer

a more reliable assessment of ecological condition

than taxonomic composition, which varies naturally

even within small spatial extents (Dolédec et al. 1996;

Mouillot et al. 2013; Chen et al. 2019).

Despite the advantages of using this approach,

knowledge gaps remain regarding how Chironomidae

functional traits relate to specific environmental

characteristics arising from anthropogenic stressors.

Thus, we wanted to know which chironomid genera

are effective for assessing ecological status in Cerrado

streams and to understand how anthropogenic stres-

sors affect traits and shape the taxonomic and func-

tional structure of Chironomidae assemblages in

neotropical streams. Given that chironomid genera

have different degrees of sensitivity to anthropogenic

disturbances, we hypothesized that the taxonomic and

functional structure of Chironomidae genera would be

negatively affected by the anthropogenic disturbances

identified in the watershed. We expected to find trait

combinations that are selected by specific stressors

acting as environmental filters and to identify which

stressors negatively affect the Chironomidae

assemblages.

Methods

Study area

The Pandeiros River basin is in the northern region of

the state of Minas Gerais, Brazil, in the Cerrado biome

and has an area of 3960 km2 (Fig. 1). Occurring in an

area of ‘‘Special Biological Importance,’’ it is a unique

environment, having shrubby wetland, marginal

lagoon and palm swamp complexes (Azevedo et al.

2009). The basin has a tropical savanna climate, with

mean annual temperatures of 22 �C, annual precipi-
tation close to 1000 mm and a water deficit between

April and September (Alvares et al. 2013). Therefore,

it is an international priority area for biome conser-

vation (Drummond et al. 2005). Most of the basin area

(85.7%) is part of the Rio Pandeiros State Environ-

mental Protection Area (Instituto Estadual de Flor-

estas 2019). It has less anthropogenic disturbance than

other basins in the biome (Macedo et al. 2018; Callisto

et al. 2019a,), making it fundamentally important for

revitalizing the São Francisco River basin (Azevedo

et al. 2009).

Survey design and physical habitat

The sample sites were selected through use of spatially

balanced procedures following a random and system-

atic survey design, according to the method used by

the USEPA (United States Environmental Protection

Agency) in its National Rivers and Streams Survey

(Olsen and Peck 2008). We sampled 30 sites at the

beginning of the dry period (April to June 2016) in 3rd

to 5th order wadeable streams (Strahler 1957). Site

lengths were proportional to 40 9 the mean width of

each site, with a minimum length of 150 m. In each

site, 11 transverse transects (perpendicular to the

channel flow) were established defining 10 sections,

where physical habitat measurements were taken

(Peck et al. 2006; USEPA 2020).

The physical habitat metrics were calculated based

on Kaufmann et al. (1999). From a list of potential

anthropogenic stressors and pressures assessed by the

physical habitat protocol and satellite images, plus

results from other Cerrado studies, we selected 12

environmental indicators. The 10 local site variables

were natural cover, leaf bank cover, canopy cover over

the channel, riparian canopy cover, channel slope, %

sand substrate, % substrate embeddedness, % fine
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substrates (\ 16 mm), average site depth and

W1_hall. W1_hall (Riparian Human Disturbance

Index) is the proximity weighted total of anthro-

pogenic pressures observed in the channel and riparian

zone. We also determined two catchment disturbance

indicators: % catchment agriculture and % catchment

pasture.

Catchment anthropogenic pressures

We used digital land-use and land-cover maps for

measuring catchment pressures. The quantification of

types of land use and cover was carried out using

supervised classification of digital images, whereby

classes are assigned to the pixels of the satellite

images, creating homogeneous patterns to which

different classes of land use and cover are associated

(Santos et al. 2017). We used 2016 imagery from the

Landsat-8 satellite, sensor OLI, orbit scene 219/71 and

219/70 made available by Instituto Nacional de

Pesquisas Espaciais (INPE, http://www.dgi.inpe.br).

The anthropogenic land-use classes included urban

areas, row crop agriculture and pasture and were cal-

culated as the percent of each class in the total site

catchment, as described in Macedo et al. (2014).

Integrated anthropogenic pressures

For quality assessments across a gradient of environ-

mental conditions, it is necessary to establish reference

conditions for comparison and standardization (Stod-

dard et al. 2008). We used the concept of ‘‘least

disturbed’’ or minimally disturbed (Stoddard et al.

2006; Martins et al. 2018), because there were no

pristine sites in the basin (Hughes et al. 1986). To

identify these sites, we used IDI (Integrated Distur-

bance Index) scores that were calculated from local

anthropogenic pressures (LDI—Local Disturbance

Index) and catchment pressures (CDI—Catchment

Disturbance Index). The CDI was based on the % of

human land uses in the site’s total catchment,

weighted by the potential degradation that each land-

use class has on aquatic ecosystems (CDI = 4x%

urban ? 2x% agricultural ? % pasture) (Ligeiro

Fig. 1 Location of the Pandeiros River basin and the sample sites
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et al. 2013). The LDI (W1_hall) summarizes the

amount of anthropogenic disturbances observed in the

channel and the riparian zone for 11 types of

disturbances. The disturbances were walls/dikes/

revetments, buildings, pavement, roads/railroads,

pipes, landfills/trash, parks/lawns, row crops, pas-

ture/range/hay fields, logging operations and mining

activities. Each disturbance was assessed on both sides

of the channel and at each of the 11 transects (Ligeiro

et al. 2013).

Chironomidae sampling

We collected chironomids at each of the 11 transects

(Peck et al. 2006) per site by use of a D-frame kick-net

(500 lm mesh, 0.9 m2 area). Each sample was placed

in a plastic bag and fixed with 50 ml of formaldehyde.

The samples were taken to the UFMG (Universidade

Federal deMinas Gerais) Benthos Ecology laboratory,

where they were washed on a 500 lm mesh screen.

The washed material was placed in transparent trays

on a light box, and each chironomid individual was

separated and later identified to genus (Trivinho-

Strixino 2011; Hamada et al. 2019). Each individual

was photographed in a stereomicroscope (Leica M80)

equipped with a digital camera (Leica IC 80 HD). The

length of each photographed specimen was measured

using Motic Image Plus 2.0 software. All specimens

were deposited in the Reference Collection of Benthic

Macroinvertebrates at the UFMG Institute of Biolog-

ical Sciences.

Chironomidae traits

Traits that are associated with species morphology,

behavior and life history strategies were used for

analyzing the functional structure of the Chironomi-

dae assemblages (Armitage et al. 1995; Trivinho-

Strixino 2011). The trait categories were based on

studies carried out in the neotropics (Butakka et al.

2016; Saulino et al. 2017; Jovem-Azevêdo et al. 2019;

Pereira et al. 2020), and when not available, the search

was expanded to studies carried out in other locations

(USEPA 2012; Serra et al. 2017) (Table 1).

Nine traits in 32 categories related to the functional

role of genera were used. Body size was obtained by

direct measurement of all individuals, from the

cephalic capsule to the last segment of the body,

excluding the cephalic and terminal appendices. Then,

individuals were grouped into three body size classes

(Table 1). This procedure was done to have a better

understanding of which body size classes, if any, are

mainly affected by a particular environmental vari-

able. Regarding feeding or trophic habits, the larvae

were divided into five classes according to their food

preferences and eating habits. The trophic food groups

are associated with the organic matter available to the

species, allowing us to infer the trophic dynamics in

ecosystems. The feeding strategy categories were

analyzed based on the size and type of organic

particles ingested and reflect the adaptation of genera

to capture available food, which varies with the

taxonomic composition of the assemblages (To-

manova et al. 2006). The trait table is given in

Supplementary Material 1.

Data analyses

We first computed the functional distance between

each pair of species. The dimensionality of the

functional space was defined from a principal coordi-

nate analysis (PCoA) based on a Gower distance

matrix. We kept the first four PCoA axes after testing

the quality of the functional space (Maire et al. 2015).

Then, we calculated four functional diversity indices

using the relative abundance of taxa in each trait

category. (1) Functional richness (FRic) represents the

range of functional strategies within an assemblage.

FRic is the minimum convex hull occupied by an

assemblage in the functional space defined by species

traits (Villéger et al. 2008). (2) Functional divergence

(FDiv) represents how abundance is spread along a

functional characteristic axis within the range occu-

pied by the assemblage. Many groups having greater

than average abundances indicate greater functional

divergence (Villéger et al. 2008). (3) Functional

evenness (FEve) describes the evenness of abundance

distribution in a functional trait space (Villéger et al.

2008) and thus shows whether all species are equally

distant in the trait space or whether the assemblage is

composed of a group of functionally similar species.

(4) Functional dispersion (FDis) represents the dis-

persion of species in the space of characteristics from

the centroid of all species weighted by their relative

abundances (Laliberte and Legendre 2010). This

functional diversity index provides a measure of trait

heterogeneity across assemblages structurally inde-

pendent from species richness. After testing the
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normality of residuals and homoscedasticity, we used

linear regression to assess the degree to which the

functional diversity indices were affected by the IDI

values.

To assess associations between trait categories and

local environmental variables, we applied RLQ and

fourth-corner methods. RLQ produces three tables:

environmental (R), taxa abundance (L) and trait

(Q) tables. RLQ aims to identify the main co-

structures between traits and environmental charac-

teristics weighted by taxa abundances (Dolédec et al.

1996), and provides classification scores to summarize

the joint structure between the three tables. The fourth-

corner method primarily tests relationships between

individual characteristics and the environment (that is,

one characteristic and one environmental variable at a

time) (Dray et al. 2014). We standardized local

environmental metrics (mean = 0 and standard devi-

ation = 1) before running all analyses. Overall signif-

icance was assessed via a global Monte Carlo test

using 9999 random permutations of the table rows of R

(sites, model 2) and of the rows of Q (species, model

Table 1 Description of traits used, codes and references

Trait Category Codes References

Tube construction Tube absent TUBNON (Serra et al. 2016)

Tube without shape, unorganized TUBUNO

Tube rigid/case-like TUBRIG

Hemoglobin Hemoglobin present HBPRES (Serra et al. 2016; Saulino et al. 2017; Jovem-Azevêdo

et al. 2019)Hemoglobin absent HBNONE

Substrate relation Free living FREELV (USEPA, 2012; Serra et al. 2016)

Burrower BURROW

Miner MINER

Fixed FIXED

Body size \ 2.5 mm SIZE1 (Serra et al. 2016)

[ 2.5–5 mm SIZE2

[ 5–10 mm SIZE3

Feeding/trophic habits Fine sediment eater DEFEE (USEPA, 2012; Jovem-Azevêdo et al. 2019; Saulino

et al. 2017; Serra et al. 2016)Shredder SHR

Scraper grazer SCR

Filterer FFEEDT

Predator PRED

Feeding strategy Filters FI (Butakka et al. 2016; Saulino et al. 2017; Jovem-

Azevêdo et al. 2019)Gatherer GA

Herbivore HE

Engulfer EN

Habit Sprawler SP (USEPA, 2012; Jovem-Azevêdo et al. 2019; Saulino

et al. 2017)Silk tube ST

Climber CL

Miner MI

Pseudopods Elongated EL (Trivinho-Strixino 2011; Jovem-Azevêdo et al. 2019)

Short SH

Absent AB

Lauterborn organs Present PR (Trivinho-Strixino 2011; Jovem-Azevêdo et al. 2019)

Absent AB
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4). A combination of RLQ and fourth-corner analyses

was used to evaluate the significance of associations

between traits and combinations of environmental

variables identified by RLQ. Significance was tested

using a permutation procedure with model 6, which is

a combination of models 2 (permutation of sites) and 4

(permutation of species). We used 9999 permutations

and the false discovery rate adjustment (FDR) method

to correct P-values for multiple-test comparisons

(Dray et al. 2014). All analyzes were performed in R

(R Core Development Team 2016) with vegan (Ok-

sanen et al. 2017), FD (Laliberté et al. 2014) and ade4

(Chessel et al. 2004) packages.

Results

We identified 6147 individuals in 52 chironomid

genera distributed in 3 subfamilies. The body size of

the organisms ranged from 1.5 to 7.2 mm (x= 3.3,

SD = 1.02). Functional richness (FRic: F1,28 = 0.13,

P = 0.72), evenness (FEve: F1,28 = 0.21, P = 0.64)

and dispersion (FDis: F1,28 = 0.41, P = 0.52) did not

significantly differ among the anthropogenic distur-

bance categories. Functional divergence index scores

were significantly lower in sites with greater anthro-

pogenic disturbances (FDiv: F1,28 = 5.54, P = 0.02)

(Fig. 2).

The global RLQ test revealed a significant rela-

tionship between abundance of genera and environ-

mental variables (model 2, P = 0.01), as well as

abundance of genera and biological traits (model 4,

P = 0.01). The cross-variance between traits and

environmental variables can be summarized by the

first two RLQ axes (60.6% and 23.7% for axis 1 and 2,

respectively). These axes were responsible for 86% of

the variability of the environmental variables and 83%

of the variance of the traits table (Fig. 3).

Regarding the first RLQ axis, we observed a

positive relationship between Tanypus, Nilotanypus,

Larsia, Labrundinia, Djalmabatista, Denopelopia,

Ablabesmyia, Monopelopia, Procladius and Fit-

tkauimyia with average substrate embeddedness, %

sand substrate and % catchment pasture. Most of these

taxa are predators (PRED) with an engulfer (EN)

feeding strategy, and the greater the amount of stream

sand and catchment pasture, the greater the abundance

of those chironomid genera.

The positive relationship of RLQ axis 1 with

Stenochironomus, Endotribelos and Beardius, which

have a miner habit (MI), herbivorous feeding strategy

(HE) and larger body size, were related to riparian and

channel vegetation cover (Fig. 3). The presence of

Polypedilum was related to % catchment agriculture,

% site fine sediments and W1_hall.

We also assessed the relationships between indi-

vidual traits and the two RLQ environmental axes and

individual environmental variables and the two RLQ

trait axes by combining both RLQ and fourth-corner

analysis. The first environmental axis (AxcR1, com-

bination of environmental variables) was positively

correlated with a herbivorous feeding strategy

(Fig. 4a). The first RLQ trait axis (AxcQ1, combina-

tion of traits) was positively related to riparian and

channel canopy cover (Fig. 4b).

Discussion

We found strong relationships between environmental

variables (local and catchment) and Chironomidae

assemblage traits (predators, herbivores, miners,

engulfers and body size). The most important trait

for structuring Chironomidae assemblages was her-

bivorous feeding strategy, positively related to ripar-

ian and channel canopy cover. Functional divergence

(FDiv) increased with increased disturbance (IDI), but

functional richness (FRic), uniformity (FEve) and

dispersion (FDis) showed no relationship with IDI

scores. These results, taken together, suggest a high

divergence of chironomid functional traits between

sites with low versus high anthropogenic disturbance.

We also found that the structure of habitat and food

resources were important factors structuring Chirono-

midae assemblages, as did Specziár et al. (2018). The

abundance of Tanypodinae was positively associated

with higher percentages of sand, embeddedness by

fine sediments and amount of catchment pasture.

Tanypodinae species are widely distributed, occupy-

ing a wide variety of habitats (Cortelezzi et al. 2020),

and they are known to be more tolerant of intermediate

flow conditions (Puntı́ et al. 2009). These organisms

are predators, one of the most important components

of assemblages, because they strongly influence food

chain structure (Saulino and Trivinho-Strixino 2018a)

and are often related to human disturbances (Feio et al.

2015). Consequently, they lead to changes in
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ecological processes, because they are directly linked

to energy transfer processes within ecosystems (Sih

et al. 2010). Genera of this subfamily have been

associated with high nitrogen concentrations, low

dissolved oxygen concentrations (Cortelezzi et al.

2020), drought (Jovem-Azevêdo et al. 2019) and

pesticides (Kuzmanovic et al. 2017). This indicates

that they are tolerant to ecological changes as observed

in this study. Some characteristics of these organisms

may explain this tolerance. They can change their

Fig. 2 Linear regression between the Functional Divergence Index (FDiv) and the Integrated Disturbance Index (IDI)

Fig. 3 Axis 1 and axis 2 of the RLQ analysis of 30 stream sites

in the Pandeiros basin. a Chironomidae scores; b environmental

variable scores; c trait scores. The values for ‘‘d’’ indicate grid

sizes for scale comparison between the four figures. Each type of

circle represents a significant relationship between the variables

analyzed
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eating habits depending on the availability of food

items (Butakka et al. 2016; Jovem-Azevêdo et al.

2019). Their body shape, longer pseudopods,

retractable antennae and fused eyes also make them

more mobile and hydrodynamically efficient (Triv-

inho-Strixino 2014; Saulino and Trivinho-Strixino

2018a).

Elevated percentages of sand and substrate embed-

dedness often indicate anthropogenic changes in

aquatic ecosystems. In another studies conducted in

the same river basin (Martins et al. 2020, 2021a, b), we

observed that increased levels of fine substrate were

associated with greater relative risk for poor biological

condition. In aquatic ecosystems, the presence of fine

substrates in stream beds is one of the most important

threats to their ecological condition (Bryce et al. 2010;

Burdon et al. 2013). This is because fine sediments

reduce the availability of habitat for macroinvertebrate

assemblages, directly compromising their structure,

composition and function (Wood and Armitage 1997;

Angradi 1999; Matthaei et al. 2010; Buendia et al.

2013; Beermann et al. 2018). Fine sediments also have

been found to be important stressors of macroinver-

tebrate condition in regional and national assessments

in the USA (Van Sickle et al. 2006; Paulsen et al. 2008;

Herlihy et al. 2020; USEPA 2020), Cerrado (Silva

et al. 2018a) and Amazonia (Leitão et al. 2018).

Excess riverbed fine substrates are associated with

human activities that increase erosion, such as agri-

culture, pasture, roads and deforestation (Kaufmann

et al. 2009; Burdon et al. 2013; Strassburg et al. 2017;

Brito et al. 2020; Dala-Corte et al. 2020).

The RLQ and fourth-corner analyses showed

positive relationships between riparian canopy cover

and herbivorous organisms such as Endotribelos,

Beardius (shredders) and Stenochironomus (miner).

In addition, these characteristics were related to

larger-sized chironomids. Riparian vegetation is

essential for important ecological processes in aquatic

ecosystems, such as providing allocthonous nutrients,

temperature balance and habitat heterogeneity. The

absence or minimization of riparian vegetation

Fig. 4 Significant relationships (P-adjusted\ 0.05) between

(a) the RLQ environmental axes and individual traits and

(b) between the RLQ trait axes and environmental variables.

Red indicates positive correlations between factors. Nonsignif-

icant relationships are labeled in gray
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reduces and homogenizes biological diversity (Castro

et al. 2018; Firmiano et al. 2021) and eliminates

sensitive species (Martins et al 2021a, b; Oliveira-

Junior et al. 2015; Brito et al. 2020; Dala-Corte et al.

2020). In addition, riparian vegetation is an important

component in herbivory processes in aquatic ecosys-

tems. Herbivores play an important ecological role in

determining the energy flow from primary producers

to higher consumers (Wood et al. 2017). Freshwater

herbivorous macroinvertebrates are composed mostly

of scrapers (algae grazers) and shredders (leaf, wood

and debris fragments) (Saulino et al. 2020). Shredders

have fundamental importance in fragmenting coarse

particulate organic matter (CPOM) present on the

streambed into fine particulate organic matter (FPOM)

(Graça 2001; Boyero et al. 2015). Low canopy

coverage can cause changes in the functional compo-

sition of chironomid assemblages (Cañedo-Argüelles

et al. 2016). Riparian canopy cover was the main

factor responsible for the functional structure of least

disturbed sites (Castro et al. 2018) and was positively

correlated with more sensitive chironomid genera

(Sensolo et al. 2012). On the other hand, the absence of

riparian vegetation had a negative effect on abundance

and richness of specialist organisms in wood process-

ing, such as Endotribelos, Beardius and Stenochi-

ronomus (Valente-Neto et al. 2015). These results

reinforce the importance of riparian vegetation for the

functional structure of Chironomidae assemblages and

other aquatic assemblages (Dala-Corte et al. 2020).

The largest Chironomidae larvae were significantly

enhanced by the presence of riparian vegetation.

Relative to the sizes of chironomids reported in the

literature (Serra et al. 2016), we found intermediate

sizes. In general, smaller larvae are benefited by high

temperatures, low rainfall and anthropogenic distur-

bances (Feio et al. 2015; Jovem-Azevêdo et al. 2019).

However, some traits, such as body size, are still not

well described for Chironomidae, even though this

trait is of great importance for other macroinverte-

brates in discriminating various types of anthro-

pogenic impact (Dolédec and Statzner 2008). Body

size is linked with key ecological functions of

macroinvertebrates (production/biomass, production/

respiration) (Robson et al. 2005). Greater effort is

needed to describe some traits for Chironomidae

(body size, voltinism and forms of resistance) (Serra

et al. 2017) in the neotropics.

Percent catchment agriculture, % fines and

W1_hall were all related to the presence of Poly-

pedilum. This cosmopolitan genus is generally asso-

ciated with sandy substrate, silt and aquatic

macrophytes (Cenzano and Würdig 2006) and has a

general detritivore food habit (Higuti and Takeda

2002; Amorim et al. 2004). The genus includes species

tolerant to a wide range of environmental conditions

(Silva et al. 2018b), such as eutrophication (Saito and

Fonseca-Gessner 2014), moderate concentrations of

dissolved inorganic nitrogen and low levels of

dissolved oxygen (Cranston et al. 1997; Roque et al.

2010; Cortelezzi et al. 2020). This is because

Polypedilum contains large amounts of hemoglobin

and can store oxygen (Trivinho-Strixino 2011). These

characteristics help explain its relationship with

anthropogenic disturbance metrics.

Riparian zone disturbance, as indicated by

W1_hall, can alter habitats and biota (Death and Joy

2004; Kaufmann and Hughes 2006; Bryce et al. 2010).

The riparian zone strongly influences the organization,

diversity and dynamics of aquatic communities (Gre-

gory et al. 1991; Allan 2004). Changes in soil

conditions, vegetation and other factors directly reflect

terrestrial aquatic interactions (Naiman et al. 2000)

and services provided by the riparian meta-ecosystem

(Callisto et al. 2019b). Thus, it is essential to consider

the important role of the riparian zone in the organi-

zation, diversity and dynamics of aquatic

communities.

Chironomid genera proved to be effective for

assessing ecological status in the Pandeiros River

basin and some environmental characteristics were

fundamental for structuring chironomid assemblages.

As predicted, chironomid traits and functional indices

were affected by the anthropogenic pressures identi-

fied in the catchment and the resultant stressors

measured at the sites. This approach allowed us to

identify cause–effect relationships, such as the

reduced herbivorous feeding strategy associated with

reduced riparian and channel canopy cover. Despite

the relatively low levels of basin disturbance, we

observed that riparian vegetation and substrate size

were particularly important for structuring chironomid

assemblages. The Chironomidae is a very diverse

family, and its functional relationships are still little

explored in the neotropics. This shows the importance

of genus-level identifications, because marked differ-

ences in tolerance levels occur within the family, as
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observed in this study (Saulino and Trivinho-Strixino

2018a). However, its predominance in sandy environ-

ments where EPT (Ephemeroptera, Plecoptera, Tri-

choptera) are uncommon, such as the Pandeiros River

basin, make it an important tool for ecological

assessment of places with these characteristics (Li

et al. 2014). Thus, this study adds an important

contribution to that knowledge and consolidated those

aspects that are most important for maintaining

aquatic ecosystem condition in the Pandeiros River

basin.
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Jovem-Azevêdo D, Bezerra-Neto JF, Azevêdo EL et al (2019)
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