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• Five local stressors due to human pres-
sures on riparian zones were assessed.

• Fifty-one freshwater invertebrate taxa
(60%) were detected as robust
bioindicators.

• Local stressors act as environmental fil-
ters for aquatic invertebrates.

• Traits related to percentage of fines,
substrate heterogeneity and water tem-
perature were identified.

• A fuzzy coded trait profile of 51neotrop-
ical stream invertebrate taxa is made
available.
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Riparian zones ensure freshwater ecosystem processes such as microclimate regulation, organic matter inputs,
andfine substrate retention. These processes illustrate the importance of riparian zones for freshwater ecosystem
functioning, maintaining biodiversity, and mitigating the effects of anthropogenic pressures on aquatic ecosys-
tems. We aimed to determine the freshwater invertebrate biological traits that are most affected by anthropo-
genic stressors in the riparian zones of 210 Neotropical savanna headwater streams. We assessed % canopy
cover over the streambed, % fine bottom substrate, % leaf pack, substrate heterogeneity, and water temperature.
Firstly, we identified bioindicator taxa in response to each local metric gradient. We assessed the functional re-
sponse, based on biological traits of bioindicators previously selected. We identified 324,015 specimens belong-
ing to 84 freshwater invertebrate taxa. Fifty-one taxa (60%) were bioindicators of anthropogenic stressors. We
found three main sets of traits. (1) a set of traits linked to increased disturbance (higher percentage of fine sed-
iments), consisting of organisms with aquatic adult stages, spherical body shape, and long adult life stages. (2) A
set of traits linked to lower disturbance (higher substrate heterogeneity), including taxa with short or very short
lifespans that live attached to substrates. (3) A set of traits linked to higher water temperature, including organ-
ismswith short adult lifespans and lower bodyflexibility. These patterns suggest that the stressors act as environ-
mental filters and do not act independently on single traits, but rather, selecting sets of biological traits that
facilitate taxa surviving and persisting in local environmental conditions. Our results support the development
of powerful evaluation tools for environmental managers and decision makers. Because degraded freshwater
communities respond in similar ways across large biogeographic areas, these sets of traits can be used for ecolog-
ical monitoring efforts along other tropical savanna headwaters worldwide.
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1. Introduction

Freshwater ecosystems host high levels of biodiversity, housing 9.5%
of globally recognized animal species, despite comprising only 0.01% of
the water on Earth (Balian et al., 2008). This is evenmore impressive in
the tropics, which hold the vastmajority of theworld's freshwater biota
(Barlow et al., 2018). However, these ecosystems are constantly threat-
ened by anthropogenic pressures, such as land use intensification, pol-
lution, habitat degradation, and riparian zone deforestation (Reid
et al., 2019; Sundar et al., 2020). These anthropogenic pressures pro-
duce multiple stressors on freshwater ecosystems (Hughes et al.,
2019) that alter physical habitats (e.g., substrate, water flow) and
water quality (e.g., nutrients, temperature, turbidity) compromising
the persistence and abundance of many taxa living in these ecosystems
(Li et al., 2019). Thus, anthropogenic stressors act as environmental fil-
ters, regulating community structure and composition (Castro et al.,
2018; Statzner et al., 2004).

Various environmental factors act as filters by selecting species with
a set of traits that allow them to persist under the local biotic (e.g. com-
petition) and abiotic (e.g. physical environment) conditions (Poff, 1997;
Statzner et al., 2004). In addition, local community composition is
constrained by historical and stochastic environmental factors
(HilleRisLambers et al., 2012). According to the Habitat Templet Theory
(Townsend and Hildrew, 1994), specific combinations of traits deter-
mine the ability of individuals to coexist in a local community under
specific environmental conditions. Supported by this idea, the habitat-
filtering hypothesis (Poff, 1997) postulates that the least suitable sets
of biological traits are eliminated in a given environment and that
only taxa possessing traits that pass through the habitat filter will be
present in the community. In this context, anthropogenic stressors are
considered additional environmental filters that change the expected
trait composition of assemblages compared to those in natural condi-
tions (Floury et al., 2017). Identifying assemblage traits also facilitates
mechanistic understanding of cause-effect relationships between local
stressors and biodiversity thereby indicating the stressors most likely
responsible for biological impairment (Berger et al., 2018; Mondy
et al., 2016; Verberk et al., 2013).

Among the various anthropogenic pressures on freshwater ecosys-
tems, land use change within the riparian zone of streams is recognized
as having one of the most severe effects on aquatic biodiversity (Dala-
Corte et al., 2020; Feld et al., 2018; Tanaka et al., 2016). Riparian zones
ensure ecosystem processes such as microclimate regulation, organic
matter inputs, and fine substrate retention (Gregory et al., 1991; Riis
et al., 2020). Canopy cover by riparian vegetation provides shading,
which limits direct solar radiation on streambeds and consequently de-
creases water temperatures (Gregory et al., 1991) and limits instream
primary production (Neres-Lima et al., 2017).Moreover, organicmatter
inputs by leaf fall on streambeds constitute important feeding and shel-
ter resources for freshwater biota (Ligeiro et al., 2020; Tiegs et al., 2019).
Riparian zones are also responsible for fine substrate retention from
shore and floodplain erosion, which reduces substrate homogenization
and consequent species losses (Feld et al., 2018). These processes illus-
trate the importance of riparian zones for freshwater ecosystem func-
tioning, maintaining biodiversity, and mitigating the effects of
anthropogenic pressures (Dala-Corte et al., 2020; Feld et al., 2018;
Luke et al., 2019).

Recent studies in temperate freshwater ecosystems have assessed
which set of traits in aquatic invertebrates are related to various anthro-
pogenic pressures, such as water quality (Berger et al., 2018), human
land use (Krynak and Yates, 2018), and agrochemicals (Collins and
Fahrig, 2020). For neotropical freshwater ecosystems, however, this
knowledge is still lacking, and because of differences in environmental
conditions between temperate and neotropical ecosystems, we should
not directly extrapolate the results of studies from one to the other. As
neotropical freshwater ecosystems are increasingly threatened by
agrobusiness expansion (Strassburg et al., 2017), it is critical to
understand the effects of that anthropogenic pressure on riparian
zone stressors and aquatic biodiversity (Dala-Corte et al., 2020).

Therefore, our aim is to understand how riparian zone stressors re-
late with trait assemblages of aquatic invertebrates and shape the func-
tional structure of these communities in neotropical streams. We
assumed that land use intensification generates pressures on riparian
zones, resulting in local environmental stressors. We hypothesized
that a set of local riparian stressors (reduced % canopy cover, increased
% fine substrate, reduced % leaf packs, reduced substrate heterogeneity,
and increased water temperature) selects certain sets of biological
traits, following the rationale presented in Table 1. We expected to
find trait combinations of aquatic invertebrates that are selected by
local stressors acting as environmental filters.

2. Methods

2.1. Study area

The study area is located in the Brazilian Neotropical savanna
(Cerrado biome). The local climate is characterized by temperatures
ranging from 22° to 27 °C and an average annual rainfall of 1500 mm
(Klink and Machado, 2005). It has two well-defined seasons, a dry sea-
son fromApril to September, and a rainy season fromOctober toMarch.
The native vegetation is composed of forest patches, shrubs, and season-
ally wet grasslands, all adapted to high acidity and aluminum and low
nutrient concentrations (Fernandes et al., 2018; Wantzen et al., 2006).
The soil can be chemically amended, which enables large-scale agricul-
tural commodity production, such as soybean, sugarcane, and cattle
(Strassburg et al., 2017). Because of increased human activities threat-
ening many endemic species, the Brazilian Neotropical savanna is one
of 25 global biodiversity hotspots (Myers et al., 2000).

2.2. Sampling design

We sampled 210 first- to third- order stream sites (1:100,000 scale;
Strahler, 1957). Sites were defined through the use of a spatially dis-
persed random survey design (Stevens and Olsen, 2004). We sampled
166 randomly selected sites and 44 hand-picked sites to ensure that
the sites were regionally representative and that both minimally dis-
turbed and highly disturbed sites were represented. The sites were lo-
cated in five different hydrological units (drainage areas within 35 km
upstream of each of five major hydropower reservoirs): Três Marias,
VoltaGrande, São Simão, Nova Ponte, and Pandeiros (Fig. 1), comprising
a total geographic area of 49,100 km2. One sampling campaign per site
in each hydrologic unit was conducted in September from 2011 to
2016, ensuring that samples were all taken during the dry season
(Silva et al., 2017; Stevens and Olsen, 2004). The sites covered a wide
range of land use (natural, pasture, agriculture, urbanized) as demon-
strated in previous studies (Callisto et al., 2019; Castro et al., 2017;
Macedo et al., 2018).

2.3. Local stressors

The length of each stream site sampled was 40 times its mean wet-
ted width, with a minimum length of 150 m. Each stream site was di-
vided into 11 equally spaced transects. We calculated five metrics as
surrogates of local stressors generated by anthropogenic pressures on
riparian zones: percentage of canopy cover over the streambed
(PCT_Canopy), percentage of fine substrate (PCT_Fines), percentage of
leaf pack cover (PCT_Litter), substrate heterogeneity index
(DIV_Substrate), and water temperature (°C) (Wat_Temperature).
Those five metrics were selected based on previous studies showing
their influence on the diversity of aquatic communities (e.g., Berger
et al., 2018; Burdon et al., 2013; Feld et al., 2018).

PCT_Canopywasmeasuredwith a hemispherical densiometer in the
middle of each transect in four directions (East,West, North, and South)



Table 1
Predictions about trait responses according to site stressor gradient increases. + indicates an increase in the frequency of the trait category; - indicates a decrease in the frequency of the
trait category with the site stressor increase.

Stressor Trait category Trait prediction Rationale Reference

Open canopy Aquatic stages - Larval
+ Adult

Less food available in riparian habitats and more available
energy to the lotic ecosystem

Berger et al. (2018)

Water temperature
increase

Respiration - Gill and
tegument
+ Plastron

Higher temperature decreases dissolved oxygen
concentration in the water

Berger et al. (2018); Castro et al. (2018);
Krynak and Yates (2018)

Voltinism - Univoltine
+ Multivoltine

Higher temperatures favor species with rapid development
and more reproductive cycles

Berger et al. (2018); Castro et al. (2018);
Krynak and Yates (2018)

Adult lifespan - Long
+ Short

Higher temperatures favor species with short adult lifespan Krynak and Yates (2018)

Leaf absence Locomotion - Crawler
+ Burrower

Litter banks are more unstable microhabitats and favor
species with crawling locomotion

Di Sabatino et al. (2014)

Substrate
heterogeneity
decrease

Body shape - Flattened and
spherical
+ Cylindrical

Loss of hard substrate and its associated body shapes Castro et al. (2018); Krynak and Yates
(2018)

Fine sediments
increase

Body flexibility - Low and
medium
+ High

Habitat selects species adapted for interstitial lifestyle Castro et al. (2018)

Locomotion and
substrate relation

- Crawler
- Attached to
substrate
+ Burrower

Loss of attachable substrates Castro et al. (2018); Krynak and Yates
(2018)
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(Peck et al., 2006). The finalmetric is themean of all 11 channel canopy-
cover means at the stream site (Kaufmann et al., 1999).

We recorded the proportion of the different types and substrate size
classes (inorganic: % of bedrock, boulder, cobble, gravel, sand, mud, and
clay; organic: % of wood, living roots, algae,macrophyte, fine and coarse
leaf) in each stream site, thereby assessing 105 individual points distrib-
uted across the 11 cross-sections of the wetted channel. This procedure
was adopted to ensure stable and precise substrate estimates
(Kaufmann et al., 1999). PCT_Litter was the percentage of coarse leaf
cover over the channel bottom at those 11 transects. PCT_Fines refers
to the total percentage of all inorganic substrates <16 mm size.
DIV_Substrate was calculated from the Simpson index considering all
types and class sizes of substrate.

We assessed only onewater quality variable, whichwasmost closely
associated with riparian conditions (Feld et al., 2018).
Wat_Temperature was measured once per site at the end of the visit
via amodel YSI 6600multiprobemeter.We observedweak correlations
among the five metrics (Pearson correlation coefficient < 0.7) allowing
us to conduct further analyses (Appendix A).
2.4. Freshwater invertebrate sampling and identification

We collected freshwater invertebrates at all 210 sites using a D-
frame kick net (30 cm opening, 0.5 mm mesh sieve). Following a sys-
tematic zig-zag pattern along the site, eleven sub-samples (0.09 m2

quadrat) were taken per site, generating a 0.99 m2 multi-habitat com-
posite sample for each site. We fixed the samples in the field with 10%
formalin, and took them to the laboratory, where invertebrates were
sorted and identified to family (except non-insect taxa: Bivalvia,
Decapoda, Nematoda, and Oligochaeta) using taxonomic keys (Costa
et al., 2006; Fernández and Domínguez, 2001; Merritt and Cummins,
1996; Mugnai et al., 2010). This procedure was adopted because the
current knowledge of Neotropical freshwater invertebrates does not
allow identifying all taxa to lower taxonomic levels (Heino et al.,
2018). Lower taxonomic level patterns (e.g. genus or family) are good
proxies of those produced at higher taxonomic resolution
(i.e., species) (Whittier and Van Sickle, 2010). Therefore, they are com-
monly applied in biomonitoring programs (Heino, 2014). Furthermore,
the trait structure of freshwater invertebrate assemblages is generally
conserved when lower taxonomic levels are used (Dolédec et al.,
2000; Gayraud et al., 2003). In addition, we identified high congruence
between EPT genera and families (PROTEST: r=0.77, p=0.00001; Ap-
pendix A), which allowed us to conduct statistical analyses at the family
level. All specimens were deposited in the reference collection of ben-
thic macroinvertebrates of the Instituto de Ciências Biológicas,
Universidade Federal de Minas Gerais.

2.5. Traits compilation

Community functional structure was indirectly assessed based on
multiple biological traits representing biological characteristics that
are connected to ecosystem functions (Dolédec and Statzner, 2010). In
the Neotropics, the use of multiple traits approaches is increasing
(e.g., Castro et al., 2018; Céréghino et al., 2018; Saito et al., 2016;
Tomanova and Usseglio-Polatera, 2007), but knowledge about freshwa-
ter invertebrate biological and ecological traits remains limited (Brito
et al., 2018; Heino, 2014). Therefore, we selected seven biological traits
(as a proxy to functional traits) expected to respond to stressors in the
studied region.We compiled trait information available in the literature
(Appendix B) following a priority criteria: i) trait databases from Neo-
tropics (Tomanova and Usseglio-Polatera, 2007; Reynaga and Santos,
2012; Saito et al., 2015; Castro et al., 2018); ii) from North America
(Poff et al., 2006); iii) and from Europe (Tachet et al., 2002). The affinity
of each taxon for each category within a trait was described using a
fuzzy coding approach, ranging from 0 to 3, with 0 indicating no affinity
of the taxon with the category, 1 indicating weak affinity, 2 indicating
moderate affinity and 3 indicating strong affinity (Chevenet et al.,
1994). This methodology allowed us to compensate for different types
and levels of information available. Affinity scores were standardized
so that their sums for a given taxon and a given trait equaled 1.We pro-
duced a trait database comprising 7 biological traits in 25 trait categories
expected to respond to localmetrics in the studied sites (Table 2). Those
7 selected traits were chosen because they are traits that we could com-
pile sufficiently, were reliably documented in the literature and with
which we could make meaningful predictions of their responses to
local stressors (Table 1).

2.6. Statistical analyses

We conducted twomajor analytical steps, described in detail below.
We first identified bioindicator taxa in response to each local stressor
gradient. We then assessed their functional responses based on the



Fig. 1. Location of hydrologic units and stream sites sampled in the Brazilian Neotropical savanna.
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biological traits of the previously selected taxa. All statistical analyses
were conducted in R version 3.5.1 (R Development Core Team, 2018),
using vegan (P.R. et al., 2015), TITAN2 (Baker and King, 2010), and
ade4 (Dray and Dufour, 2007).
2.7. Threshold indicator taxa analysis

We performed Threshold Indicator Taxa ANalysis (TITAN) to detect
change points in the freshwater invertebrate taxa responses to each
site stressor. Our goal was to select statistically robust bioindicator
taxa, and then, conduct subsequent analytical steps with the most suit-
able taxa. Through this initial screening we evaluate which taxa were
most responsive to the site stressors. This procedure may help to de-
velop more stressor-specific trait-based biomonitoring tools, by com-
bining taxonomic and functional indicators. A similar approach was
applied in temperate regions to assess the effects of land use at different
spatial extents (Krynak and Yates, 2018), and multiple local stressors
(Berger et al., 2018).

TITAN combines change point and indicator species analyses to de-
tect abrupt change in the abundance and frequency of taxa along each
site stressor (Baker and King, 2010). The robust indicators taxa are es-
tablishment bypurity (i.e., proportion of change points along the resam-
pling that agree with the observed value) and reliability properties
(i.e., proportion of the resampling that reports indicator p value
<0.05) by the bootstrap technique to confirm the thresholds for each
taxa (500 resamples with replacement) (King and Baker, 2014). Taxa
considered robust bioindicators are those with purity >0.95, reliability
>0.95, and achieving p < 0.05 to bootstrapping replicates (Baker and
King, 2010; King and Baker, 2014).

We identified 324,015 specimens belonging to 84 freshwater inver-
tebrate taxa. Fifty-one taxa (60%) were detected as robust bioindicators
by TITAN (Table 3) (see Appendix C for detailed taxa results) and were
used in the following analyzes.
2.8. RLQ and Fourth-corner analyses

After selecting the freshwater invertebrates that were robust
bioindicator taxa, we assessed the associations between their trait cate-
gories and site stressors through use of RLQ analysis (Dolédec et al.,
1996). RLQ is an extension of the co-inertia analysis (Dolédec and



Table 2
Traits, categories and codes used for freshwater invertebrates considered in the present
study.

Trait Code Category

Voltinism Volt_uni ≤1 reproductive cycle per year
Volt_mult >1 reproductive cycle per year

Locomotion Loc_burr Burrower
Loc_craw Crawler
Loc_attac Attached
Loc_swim Swimmer
Loc_flier Flyer

Body flexibility Flex_ 10 <10°
Flex_10_45 >10–45°
Flex_ 45 >45°

Aquatic stages Stag_egg Egg
Stag_larv Larvae
Stag_nymp Nymph
Stag_adult Adult

Adult lifespan Adult_v.short Very short
Adult_short Short
Adult_long Long

Body shape Shape_lined Streamlined
Shape_flatt Flattened
Shape_cylin Cylindrical
Shape_spheri Spherical

Respiration Resp_teg Tegument
Resp_gil Gill
Resp_pla Plastron
Resp_spi Spiracle
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Chessel, 1994) that allows relating three tables: a site stressor table (R),
a taxa abundance table (L), and a trait table (Q). RLQ aims to identify the
main co-structures between traits and site stressor variations mediated
by taxa abundances. Prior to RLQ analysis, the three tables were ana-
lyzed separately. Correspondence analysis (CA) was performed on the
abundance table and principal component analysis (PCA) on the trait
and site stressor tables, respectively. Local metrics were standardized
(mean = 0 and standard deviation = 1) before running all analyses.
RLQ summarizes the multivariate structures by searching for linear
combinations of traits and site stressors on which sites and taxa are
projected, providing new site and taxa scores that are the most covari-
ant. The overall significance was further assessed via a global Monte-
Carlo test using 9999 random permutations of the table rows of R
(sites, model 2) and of the rows of Q (species, model 4). Fourth-corner
analysis was used to test bivariate relationships between traits and
local metrics. Furthermore, a combination of RLQ and fourth-corner
analyses was used to evaluate the significance of associations between
traits and combinations of environmental variables identified by RLQ.
Significance was tested using a permutation procedure with the
model 6, which is a combination of models 2 (permutation of sites)
and 4 (permutation of species). We used 9999 permutations and the
false discovery rate adjustment (FDR) method to correct P-values for
multiple-test comparisons (Dray et al., 2014).
3. Results

The relationships between the trait composition of robust
bioindicators selected by TITAN and site stressors were globally signifi-
cant (Model 2 simulated p < 0.001; Model 4 simulated p < 0.035). The
relationships between traits and site stressors can be summarized by
the first two RLQ axes (68.9% and 19.1% of the cross-variance between
the traits and environment for axis 1 and 2, respectively). The first
two axes accounted for 85% of the variability of the site stressors table
and 70% of the variance of the trait table. In addition, the new set of
site and taxa scores had a correlation of 0.14 along the first RLQ axis,
which was 33% of the best possible correlation (i.e., obtained from the
separate CA of the invertebrate abundance table) (Table 4).
The left (negative) part of the first RLQ axis identified taxa (Bivalvia,
Hydracarina, Planorbiidae, Corixidae, Gerridae, Veliidae; Fig. 2a) with
longer adult lifespans, spherical body shapes, andflier or burrower loco-
motion (Fig. 2b). Those taxa were mostly found in sites with higher
PCT_Fines, PCT_Canopy, PCT_Litter, and Wat_Temperature (Fig. 2c).
The right (positive) part of the axis highlighted organisms
(Hydropsychidae, Philopotamidae, Psephenidae, Glossosomatidae,
Simuliidae; Fig. 2a) that live attached to substrate, have short and very
short lifespans, and have streamlined body shapes (Fig. 2b) in sites
with higher DIV_Substrate (Fig. 2c). The second RLQ axis indicated
sites withwarmerWat_Temperature and DIV_Substrate. Those habitats
were characterized by organisms with short adult lifespans, lower body
flexibility and crawling locomotion (e.g. Glossosomatidae,
Helicopsychidae, Psephenidae).

We did not find significant bivariate associations between traits and
local stressors after applying the P-value adjustment. This result sug-
gests that a combination of traits, rather than a single trait, is affected
by local stressors. Therefore, we further assessed the relationships be-
tween individual traits and the two RLQ environmental axes and indi-
vidual environmental variables and the two RLQ trait axes by
combiningboth RLQ and fourth-corner analysis. Thefirst environmental
axis (AxcR1, combination of local stressors)was significantly negatively
correlated to organismswith adult aquatic stages and longer adult lives,
whereas the second environmental axis (AxcR2) was positively associ-
ated with organisms with crawling locomotion (Fig. 3a). The first RLQ
trait axis (AxQ1, combination of traits) was negatively related to
PCT_Fines and PCT_Canopy and positively related to DIV_Substrate.
Wat_Temperature was the only metric positively associated with the
second RLQ trait axis (AxQ2) (Fig. 3b).

4. Discussion

We found threemain sets of traits: (1) a set of traits linked to higher
percentages of fine sediments, consisting of organisms with aquatic
adult stages, spherical body shapes, and long adult lives; (2) a set of
traits linked to higher substrate heterogeneity, that included taxa that
live attached to substrates and have short or very short lifespans;
(3) a set of traits associated with higher water temperatures, repre-
sented by organisms with short adult lifespan, lower body flexibility
and crawling locomotion. These findings imply that the site stressors
resulting from anthropogenic pressures on riparian zones act as envi-
ronmental filters and do not act independently on single traits, but
rather, selecting sets of biological traits that aid taxa in surviving to
local environmental conditions in headwater streams.

We found that an aquatic adult stagewas a common trait affected by
site stressors. This might be explained by the tendency of freshwater in-
vertebrates in streams affected by land use intensification to have lower
capacities for aerial dispersal, avoiding adverse conditions in the sur-
rounding terrestrial ecosystems and becoming confined to the river
channel (Carlson et al., 2016). Thus, a riparian zone affected by site an-
thropogenic stressors would act as an environmental filter, barring
those species that rely on terrestrial life stages for their distribution.
Similar results were found in previous studies in temperate streams
(Krynak and Yates, 2018).

Similarly, another set of traits was linkedwith higher water temper-
atures, which is associated with increased availability of autochthonous
food sources (Linares et al., 2018; Md Rawi et al., 2013; Santos et al.,
2019). These food sources are more readily consumable by freshwater
invertebrates than more lignified allochthonous organic matter (Death
and Collier, 2010; Thorp and Delong, 1994). Sites with these conditions
had higher prevalence of Bivalvia, Gastropoda and someColeoptera, and
thus again a higher prevalence of fully aquatic taxa (Cummins et al.,
2005; Ding et al., 2017).

We found that burrower locomotion and spherical body shape were
also traits closely related to site stressors. This result can be explained as
a function of a common anthropogenic stressor in the riparian zone



Table 3
Robust indicator taxa identified by TITAN in response to each site stressor assessed. The change point values, and taxa association with gradient for each taxon (negative “-”, or positive
“+”) are shown. Below each site stressor are the range values, as well the mean and standard deviation values between parenthesis.

PCT_canopy PCT_litter Wat_temperature DIV_substrate PCT_fines

0–100 (74 ± 26) 0–89 (9 ± 11) 14–26 (20 ± 2) 0–0.9 (0.7 ± 0.2) 0–100 (50
± 26)

Taxa – + – + – + – + – +

Acari Hydracarina 24
Coleoptera Dryopidae 54

Dytiscidae 26
Elmidae 22
Gyrinidae 0.8
Lutrochidae 100 20
Psephenidae 51
Ptilodactylidae 31

Crustacea Decapoda 99 25
Diptera Chaoboridae 17

Culicidae 26 15 0.1
Empididae 16 0.9
Muscidae 37
Psychodidae 21 0.2
Simuliidae 22
Tabanidae 22

Ephemeroptera Baetidae 13 23 0.3 96
Caenidae 16
Euthyplociidae 27
Leptohyphidae 0.2
Leptophlebiidae 33 25 0.1 96
Polymitarcyidae 15 0.3

Hemiptera Corixidae 16 0
Gerridae 89
Naucoridae 0.1 0
Notonectidae 16
Pleidae 9 12
Veliidae 22 25

Lepdoptera Pyralidae 9 0 0
Megaloptera Corydalidae 0.8

Sialidae 28 18
Mollusca Bivalvia 0.1 1

Hydrobiidae 98 24
Physidae 34
Planorbidae 73 0.4

Odonata Coenagrionidae 0 25 0.1 94
Gomphidae 9 34
Libellulidae 20 16
Megapodagrionidae 22
Perilestidae 15

Plecoptera Gripopterygidae 100 0.9
Perlidae 22 0.8 94

Trichoptera Calamoceratidae 35 19 0.8
Glossosomatidae 0.7 94
Helicopsychidae 24
Hydrobiosidae 20 23
Hydropsychidae 0.1
Hydroptilidae 9 24 0
Philopotamidae 0.8 48
Polycentropodidae 34 19 94
Sericostomatidae 22
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leading to increased fine sediment deposition in the stream bed, reduc-
ing sediment heterogeneity (Bryce et al., 2010; Burdon et al., 2013).
Therefore, taxa with these traits are better adapted to this modified
Table 4
RLQ analysis summary outputs: eigenvalues and percentage of total co-inertia, correlation
with the L matrix (taxa), ratio of inertia and co-inertia for R (local metrics) and Q (trait ta-
ble) for Axis 1 and Axis 2.

RLQ analysis outputs Axis 1 Axis 2

% of total co-inertia 68.9 19.1
Eigenvalues decomposition 0.004 0.001
Correlation (L) 0.14 0.08
Ratio of inertia and co-inertia (R) 0.84 0.85
Ratio of inertia and co-inertia (Q) 0.60 0.70
habitat. These results can be explained by reduced sediment retention
by riparian vegetation (Sánchez-Bayo and Wyckhuys, 2019).

Short or very short lifespans, attached locomotion, and streamlined
body shape were a set of traits closely related with sites with reduced
anthropogenic stressors. These traits reflect adaptations to
least-disturbed sites in the Neotropical savanna, small forested streams
with high substrate heterogeneity and available hard substrates
(Martins et al., 2018). Substrate heterogeneity provides a more diverse
set of microhabitats and presumably greater taxonomic and trait diver-
sity (Milesi et al., 2016; Townsend and Hildrew, 1994).

Short adult lifespans and lower body flexibility were a set of traits
linked to the second axis of our analysis. They were closely related to
warmerwater temperatures but not to the other site stressors, implying
that these traits are linked to less-disturbed open-canopy streams. As
opposed to closed-canopy streams, these ecosystems are more



Fig. 2.Axis 1 and axis 2 of theRLQ analysis from210 stream sites in theNeotropical savanna. (a) taxon scores; (b) trait scores; (c) site stressor scores. The values for ‘d’ indicate grid sizes for
scale comparison across the four figures.

Fig. 3. Significant relationships (P-adjusted <0.05) between (a) the RLQ environmental axes and individual traits and (b) between the RLQ trait axes and individual local stressors. Red
indicates positive and blue indicates negative correlations between factors. Non-significant relationships are labeled in grey. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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dependent on autochthonous primary production (Ceneviva-Bastos
and Casatti, 2014; Datry et al., 2016), which explains their association
with taxa that feed preferentially on algae (e.g. Glossosomatidae,
Helicopsychidae, Psephenidae). It also shows that open-canopy streams
are important for supporting high biological diversity and complexity of
freshwater invertebrate assemblages in the Neotropical savanna
(Linares et al., 2018; Santos et al., 2019).

Selection pressures do not act independently on single traits, but
rather, on whole organisms carrying many interacting traits. Conse-
quently, species performance will be a function of trait combinations
that together present an adaptive response to the environmental condi-
tions (Verberk et al., 2013). This justifies the fact that we did not find
significant bivariate associations between one trait and one stressor,
but, instead, trait combinations as shown in other studies (Berger
et al., 2018; De Castro-Català et al., 2020). Therefore, our study provides
evidence that trait combinations of aquatic invertebrates define
stressor-specific tolerance to local riparian stressors. Nevertheless, it is
important to highlight that a different combination of traits can provide
a similar overall solution to specific ecological problems. This type of
trait interrelationship provides a complex adaptive solution (strategy)
to themultitude of environmental filters faced by an organism in its en-
vironment, but still unexplored. Therefore, the trait combinations in re-
sponse to different stressors that we reported may encourage further
attempts to identify life-history strategies and to develop stressor-
specific indices, an approach still little explored (Mondy et al., 2016).

The riparian zone mediates important ecological processes for
stream ecosystems, such as the quality and quantity of energy inputs,
temperature regulation and habitat heterogeneity (Gregory et al.,
1991). When these processes are disrupted local stressors then act as
highly selective environmental filters, drastically reducing biological di-
versity and homogenizing it across large geographical areas (Castro
et al., 2018; Rahel, 2002). This disruption is especially worrying for the
Neotropical Savanna, because of its high endemism, which can result
in the extinction ofmany species and a possible collapse in the biodiver-
sity of the biome (Strassburg et al., 2017).

By using the alteration of the trait structure of benthicmacroinverte-
brate communities as a proxy to changes in ecosystem processes, our
results also suggest that the anthropogenic stressors can cause signifi-
cant shifts in the ecosystem functioning of neotropical streams. As a
general trend, we found that sites affected by the stressors favored
taxa associated with a fully aquatic lifestyle and autotrophic food
sources. This may result in more isolated communities, due to taxa
with aquatic adult stages not being as good dispersers as thosewith ter-
restrial (flying) adult stages (Sarremejane et al., 2017). Also, benthic
macroinvertebrate communities that are more dependent on autotro-
phic food sources are less stable and resilient than those more depen-
dent on allochthone food sources (Death and Collier, 2010). Therefore,
these communities would be more vulnerable to stochastic distur-
bances andmore prone to local extinctions, and therefore should be pri-
oritized for restoration efforts.

5. Conclusion

Our results highlight the importance of riparian zones for the taxo-
nomic and functional structure of aquatic assemblages and anthropo-
genic stressors as environmental filters in neotropical stream
ecosystems. They show that streams affected by local anthropogenic
stressors select taxa with sets of traits distinct from those in sites least
affected by those stressors, which can compromise ecosystem function-
ing. Our results can also support the development of evaluation tools for
environmentalmanagers and decisionmakers. For example, they can be
used to indicate that the effects of a stressor are significantly affecting
the functioning of a stream ecosystem. Also, assessing specific groups
of site stressors and responses of specific traits simplifies environmental
impact studies and providesmechanistic understanding of different an-
thropogenic stressors. Moreover, these results encourage the
application of bioindicators to assess anthropogenic pressures in ripar-
ian zones, providing an effective approach for singling out themost vul-
nerable sites in the scenario of global changes and dramatic changes in
land use, helping conservation and restoration efforts. Because freshwa-
ter assemblage traits will respond in similar ways across large biogeo-
graphic areas, this set of traits can be used with relative ease for
ecological monitoring in other tropical savanna headwater streams
worldwide.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2020.141865.
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