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of a sewage spill: a case study of a South American environmental
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Abstract

Benthic macroinvertebrate assemblages are used to assess anthropogenic stressors and pressures globally—although consider-
able spatial and temporal variability in those assemblages occur naturally and in their sampling. We evaluated the effects of
an untreated domestic sewage spill on the spatial-temporal occurrence, structure and dynamics of benthic macroinvertebrate
assemblages, through use of occupancy probability and time series modelling. Our study produced three key results: (1)
Site colonization, extirpation, and occupancy probabilities of resistant and sensitive assemblages were not influenced by the
predictor variables measured before and after the spill nor between sites. (2) Over time, site occupancy for the proportion
of sensitive taxa increased while the proportion of resistant taxa decreased. (3) Artificial substrates reduced natural vari-
ability more than Surber sampling of natural substrates, but macroinvertebrate family richness differed over time regardless
of sampling device. We conclude that rigorous monitoring and data analyses of benthic bioindicators can be a cost-effective
approach for assessing the biotic effects of sewage discharges on neotropical urban streams.
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Introduction

Biological communities reflect the effects of multiple
anthropogenic chemical, physical, and biological stressors
and pressures, as well as natural environmental gradients.
However, entire communities are rarely monitored because
of costs and limited taxonomic expertise. Instead, taxo-
nomic subsets of communities, i.e., macroinvertebrate or
fish assemblages, are assessed. To make such assessments
the development and use of analytical tools are essential to
assess environmental health, separate natural and anthro-
pogenic disturbance gradients, and to diagnose the spe-
cific stressors resulting from anthropogenic disturbances
on those assemblages (Jgrgensen 2007; Van Sickle and
Paulsen 2008). Biological indicators facilitate the inter-
pretation of large amounts of data from ecological units,
such as forest fragments and river basins, that are used
by researchers, environmental managers, and government
employees to develop more effective land use policies in
those ecosystems (Hering et al. 2010).

A common concern for environmental management is
assessing the effects of untreated or poorly treated sewage
discharges. Such discharges can be chronic, resulting in
subtle chemical, physical, and biological changes (Moya
etal., 2011; Mwedzi et al. 2016) or acute, resulting in fish
kills (Haslouer 1979; Lee et al. 2013). Nutrient enrich-
ment or eutrophication is a global issue caused by multiple
human activities (Herlihy and Sifneos 2008; USEPA 2016;
Stoddard et al. 2016) and its effects are dramatic in South
American urban freshwater ecosystems (Merlo et al. 2011;
Feio et al. 2015; Franca et al. 2019). Because it is desirable
to predict potential eutrophication impacts and recovery a
priori, studies should be capable of detecting the effects of
excess nutrients when they are beginning, for assessing the
results of pollution mitigation efforts, and for assessing the
effects of effluent discharges themselves (Gél et al. 2019;
Mor et al. 2019; Edegbene et al. 2020).

Several biological tools have been developed for assess-
ing the effects of sewage discharges. The biological mon-
itoring working party (BMWP) index, based on water-
quality tolerance values for biological taxa, was proposed
by the Biological Monitoring Working Party (1978) and
revised in 1980 (National Water Council 1981) in England.
It has been widely adapted (Alba-Tercedor 1996, Spain;
Junqueira et al. 2000, Brazil; Roldan 2003, Colombia;
Sedeno-Diaz et al. 2012, Costa Rica; Kazanci et al. 2016,
Turkey). The BMWP requires only family-level taxonomic
precision, which saves time and money, and facilitates
monitoring in urban streams (Franca et al. 2019) where
anthropogenic pressures and stressors such as eutrophi-
cation are often severe. The family level HBI (Hilsen-
hoff Biotic Index) was developed for similar reasons
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(Hilsenhoff 1988). However, others seeking greater eco-
logical insights have proposed taxonomic diversity and
evenness indices (Shannon 1948; Pielou 1966), assem-
blage structure metrics (Lenat and Penrose 1996), multi-
metric indices (Karr and Chu 1999), and functional group
indices (Cummins et al. 2005).

Studies of anthropogenic effluents are common in the
scientific literature (e.g., Pfeifer and Bennett 2011; Journey
et al. 2018; Matej-Lukowicz et al. 2020; Paulsen et al. 2020).
However, studies focused on a single taxon or assemblage
of interest often interpret the failure to detect that taxon or
assemblage as a true absence (MacKenzie et al. 2018). This
is problematic given that estimates of true presence or occur-
rence of a taxon or assemblage can be biased by low detec-
tion probabilities (rare members), poor sampling methods,
and insufficient sampling effort (Li et al. 2001, 2014; Cao
et al. 2002; MacKenzie et al. 2018). Thus, not accounting
for imperfect detection may lead to spurious results and
misleading conclusions about factors influencing the taxon
or assemblage of interest (MacKenzie et al. 2018). Recent
studies have focused on detection probability estimation to
improve presence or occupancy estimates for individual
taxonomic groups (Cortelezzi et al. 2017, 2018, 2020). How-
ever, less attention has been given to assemblage inventory
studies, especially how anthropogenic disturbances change
taxa occurrence or assemblage persistence and resilience.

Occupancy models account for imperfect detection and
false absences by modelling taxa detection probability as a
function of methodological issues. The occupancy model-
ling approach is very flexible and can be used not only to
model changes in the occupancy state through time at the
taxon-level (e.g., Cortelezzi et al. 2017), but also to model
those changes at an assemblage level (see MacKenzie et al.
2018; pp. 558-580). Also, this approach allows including
taxa that were not detected at any of the study units but that
had the probability of being present based on previous stud-
ies or taxa distribution maps, which is important to account
for imperfect detection and false absences (MacKenzie
et al. 2018; p. 564). Thus, such models generate unbiased
estimates of such indicators as taxa occupancy or richness
(MacKenzie et al. 2003). Also, with occupancy modelling
it is possible to evaluate taxa colonization and extirpation
probabilities over time as a function of anthropogenic distur-
bances during that period (MacKenzie et al. 2003). Higher
(or unaltered) probability of colonization in a location by
assemblages after an anthropogenic impact can indicate
greater resilience. On the other hand, lower (or unaltered)
probability of extirpation in a location by assemblages after
an anthropogenic impact can indicate greater persistence
(MacKenzie et al. 2003).

In this study, we used a set of analytical and ecologi-
cal tools to assess the effects of a sewage spill on ben-
thic macroinvertebrates in a southeastern Brazil stream.



Limnology

To do so, we had the following three objectives: (1)
Through time-series analyses, we sought to determine
which of several commonly used sampling methods and
benthic macroinvertebrate indicators were most sensi-
tive for detecting the effects of the spill. We predicted
that the BMWP and multimetric indices (MMIs) would
best detect the spill effects because the BMWP was
designed for assessing pollution and MMIs incorporate
multiple components of assemblage structure, composi-
tion and function. In addition, we predicted that passive
colonization samplers would be less variable than Surber
samplers but that Surber sampling would yield greater
numbers of individuals and taxa, because colonization
samplers minimize habitat variability. (2) We wanted to
determine the effects of an ~ 6-month sewage spill on the
spatial-temporal occurrence of benthic macroinverte-
brate assemblages. We expected higher occupancy of the
resistant assemblage than the sensitive assemblage at the
spill site when compared to the upstream site and that
occupancy would be influenced by the predictor variables
measured at the sites. (3) Finally, we wanted to evaluate
the degree to which the type of sampling method (passive
versus active) and season influenced detection probability
of the resistant and sensitive assemblages. We expected
that Surber samples would have greater detection prob-
ability, because they sample more habitat types. We also
expected that the detection probability would be lower
in the rainy season, because of freshets and increased
macroinvertebrate drift.

Methods
Study area

From 2006 to 2015, we sampled two sites in Gurita stream,
which is located near the city of Ouro Branco at the south
end of the Espinhaco Range, in a transitional area between
the Cerrado and Atlantic Forest biomes, southeastern Brazil.
The landscape is dominated by grasslands, pastures, and for-
est fragments of different sizes. The climate type is meso-
thermic (Cwb) according to Koppen’s classification with dry
winters, wet summers, and mild air temperatures (20.7 °C
average annual air temperature, 1200 mm average annual
precipitation).

The two sites were on the same second-order stream
(3 km apart), inside forest fragments at an altitude of 900 m
a.s.l. and the stream was>90% shaded by riparian vegeta-
tion. Our reference site (P1; 20° 32’ 55.1"S, 43° 43’ 08.7"W)
was located upstream of a peri-urban area and had >90%
natural cover and no human pressures in its catchment. Our
spill site (P2; 20° 31’ 43.2"S, 43° 45’ 47.1"W) was located
downstream of that area and normally received treated indus-
trial effluents and some urban run-off, but was upstream
of Ouro Branco’s treated sewage discharge point (Fig. 1).
Regarding the physico-chemical characteristics (Table S3),
the water at the spill site was enriched when compared to
the reference site: both total N: 0.7 (+2.3) mg L™! versus
0.1 (£0.1) mg L7'; total P: 329.3 (+259.3) ug L™! versus
10.0 (+14.7) pg L™! were higher. The sites had similar mean
widths (2.5+0.4 m), depths (0.35+0.15 m) and current
velocities (0.2+0.1 m s~ versus 0.5+0.2 ms™). Although
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normally the spill site would receive treated sewage, an
untreated sewage spill occurred from November 2008 to
April 2009 because of a broken pipe at this spill site (Fig. 1).

Environmental sampling

We sampled both water quality and physical habitat condi-
tions. To assess physical habitat structure at each site we
used a qualitative habitat index (Callisto et al. 2002) adapted
from US-EPA (1987) and Hannaford et al. (1997). It was
based on 22 variables incorporating instream physical habi-
tat complexity, hydromorphological features, and riparian
and sub-basin conditions (Table S1). We also measured sev-
eral water quality measures recommended by Brasil (2005)
for assessing urban waters. We measured pH and conductiv-
ity (uS/cm) through use of a multimeter (YSI Multiprobe).
Water samples were placed in a cooler and taken to the
laboratory where dissolved oxygen (mg/L™"), total alkalin-
ity (mEg/L CO,), and total phosphorus (mg/L ") were deter-
mined via standard methods (APHA 1998) (see Table S3).
As a preliminary analysis, we ran a time-interrupted series
analysis (McDowall et al. 2019), using the sewage spill as
the interrupting variable. Among these, only the qualita-
tive habitat index was significantly altered by the spill, sug-
gesting that the physical habitat structure was significantly
altered by the spill. These analyses were made using the its.
analysis package (English 2019) in R (R Core Team 2015).

Macroinvertebrate sampling

We collected macroinvertebrates in three ways from both
stream sites. We used Surber samplers in both the dry and
wet seasons, but for differing numbers of months because
of logistical constraints, for a total of 63 site-visits from
2006 to 2015. The three Surber samples (30 X 30 cm, 250
um mesh) taken in each site-visit were individually returned
to the lab for processing (totaling 378 Surber samples). In
addition, from 2008 to 2015 in 38 dry season months, we
employed two different artificial substrates (38 composite
samples for each). We secured 25 pebble-filled mesh bags
(20 cm x 30 cm, 2 cm mesh size) each containing approxi-
mately 25 pebbles (~2 kg) into the stream bed. We also
secured 200 g of hollow plastic cylinders (hereafter, curlers)
in each of 25 mesh bags (20 cm X 30 cm, 2 cm mesh size)
into the stream bed. Both artificial substrates were incubated
for 30 days prior to recovery. In each of the five dry season
months (April to August) the contents of each bag and the
bag itself were separately placed in a container and returned
to the laboratory. The two types of artificial substrates were
not used in the wet season because of their high probabil-
ity of loss and difficulty of retrieval during bank-full flows
(water discharge and water depth often increased over 20
times in the rainy season compared to the dry season).
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In the laboratory, all three types of samples were emptied
separately into a sorting tray. The pebbles and curlers were
cleaned with fresh water and a small paint brush and the
bags were washed with water. Both the sample bag and indi-
vidual pebbles and curlers were examined for invertebrates
before being removed from the sorting tray. Likewise, the
Surber samples were placed in a sorting tray. The contents
of the sorting tray (water and substrate) were then rinsed
through a sieve (250 um mesh), and all invertebrates were
removed with forceps and placed into glass vials, contain-
ing 70% ethanol for later identification. Specimens were
identified to family under a stereomicroscope through use
of taxonomic keys (Pérez 1988; Merritt and Cummins 1996;
Fernindez and Dominguez 2001; Costa et al. 2006; Mug-
nai et al. 2010). Family-level identification is considered an
efficient, easy-to-use, reliable rapid assessment method for
researchers with insufficient taxonomic knowledge to moni-
tor tropical streams that have high macroinvertebrate diver-
sity (Godoy et al. 2019; Ligeiro et al. 2020).

The benthic macroinvertebrates were classified into
resistant or sensitive families, based on Junqueira et al.
(2000). Families scored from 1 to 3 were classified as resist-
ant, those scored 8 to 10 were classified as sensitive, and the
rest were classified as tolerant. For this study we focused on
resistant and sensitive taxa because they are expected to have
a clearer response to environmental changes (Rosenberg and
Resh 1993; Karr and Chu 1999; Stoddard et al. 2008).

Data analyses

Because seasonal disturbances can have a pivotal role in
shaping lotic ecosystem processes and structure (Linares
et al. 2013; Miiller et al. 2016), we ran preliminary analy-
ses to assess its effects. We first evaluated which of the 27
benthic macroinvertebrate indicators for the 63 site-visits
collected by Surber sampling showed significant difference
between dry and wet seasons (Table S2). We checked for
seasonal influence to decide whether we should include dry
and wet periods as an additional predictor variable in subse-
quent analyses and thus, avoid biased estimates and potential
misleading conclusions. To assess seasonal effects, we used
R (R Core Team 2015) to run generalized linear models
(GLM’s) with a Poisson or Gaussian distribution, depend-
ing on the response variable (the R script is available in
Table S3). Then, we tested model significance by an Analy-
sis of Deviance. We chose four different types of widely
used indicators (e.g., Cairns and Pratt 1993; Thorne and
Williams 1997; Linares et al. 2019). (1) Taxonomic com-
position variables included taxa richness, EPT (Ephemer-
optera, Plecoptera, Trichoptera) richness, % EPT, EPT
abundance, % Chironomidae, Chironomidae abundance, %
chironomids + oligochaetes, chironomid + oligochaete abun-
dance, and BMWP (Junqueira et al. 2010). (2) Assemblage
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structure indicators included total abundance, Jaccard even-
ness, Pielou evenness, and Shannon—Wiener diversity. (3)
Multimetric indices included those of Ferreira et al. (2011),
Macedo et al. (2016), and Silva et al. (2017), each of which
had been developed for Minas Gerais streams. (4) Functional
composition indicators consisted of % collector-gatherers,
collector-gatherer abundance, % scrapers to shredders + col-
lectors, % filtering collectors to gathering-collectors, %
scrapers + filtering-collectors to shredders + gathering-col-
lectors, % shredders to filtering + gathering-collectors, and
% predators, as recommended by Cummins et al. (2005). We
found significant differences between dry and wet seasons,
especially in variables affected by abundance (Table S2).
Total abundance, collector-gatherer abundance, % collec-
tor-gatherers, EPT abundance, Chironomidae abundance,
and chironomid + oligochaete abundance were significantly
higher in the dry season than in the wet season (p <0.05).
Therefore, we accounted for seasonal influence in subse-
quent analyses.

To test which metrics were most capable of detecting
the biological effects of the spill through time (objective 1),
we ran a time-interrupted series analysis (McDowall et al.
2019). To do so we used each of the 27 biological metrics
(see Table 1) as a response variable and the November 2008
to April 2009 spill as the interrupting variable. We ran the
analysis each time for the three different sampling methods
(63 Surber site visits; 38 curler and pebble site visits) and
added Sampling Site as a covariate. Then, we estimated the
proportion of variation of each response variable (i.e., effect
size; 1%) that was explained by the interrupting variable by
dividing the sum of squares of the predictor variable (i.e.,
the interrupting variable) by the total sum of squares of each
time-interrupted series analysis. It resulted in the proportion
of variation of each response variable that was explained by
the spill presence. These analyses were made using the its.
analysis package (English 2019) in R (R Core Team 2015).

To evaluate the effects of an~6-month spill on the spa-
tial-temporal occurrence (or occupancy) of benthic macroin-
vertebrate assemblages (objective 2), we used a multi-season
occupancy approach (MacKenzie et al. 2003). This approach
allowed us to model changes in site occupancy of the two
assemblages (resistant or sensitive) between sampling sea-
sons as a function of environmental site (upstream or spill)
conditions. Then, to evaluate whether changes in site occu-
pancy were likely to occur among months, we defined sam-
pling ‘season’ as a month (MacKenzie et al. 2003).

The initial occupancy probability (¥;) was the probability
that a site was occupied by an assemblage in the first month
(MacKenzie et al. 2003). The dynamic processes driving
changes in assemblage occupancy at a site between consecu-
tive months are its colonization and extirpation. Coloniza-
tion (y) is the probability that an unoccupied site in a given
month t is occupied by families of an assemblage in month

t+ 1. Extirpation (¢) is the probability that a site occupied
in month t is unoccupied by members of an assemblage in
month t+1 (MacKenzie et al. 2003). Among-month per-
sistence is the probability of the site being occupied by
members of an assemblage in successive months; thus, per-
sistence is the complement of extirpation probability (1—&)
(MacKenzie et al. 2003). The occupancy probability esti-
mates for the other months can be derived by the following
formula from MacKenzie et al. (2003):

\prﬂ = \Pr(l - el) + (] - ‘I’,) Y (€8]

This approach also allowed us to account for imperfect
detection when estimating the occupancy-related parameters
by modelling detection probability and thus, to evaluate the
degree to which the type of sampling method (passive versus
active) and season influenced detection probability of the
resistant and sensitive assemblages (objective 3). Detection
(p) is the probability of detecting members of an assemblage
at a site i within each month, given the site is occupied by
these members.

We used a subset of the water quality variables recom-
mended by Brasil (2005) for assessing pollution as predic-
tor variables in our models. For screening these variables,
we first tested for correlation among our predictor variables
and found that only pH and alkalinity were highly corre-
lated (Irl>0.70; Stoddard et al. 2008; Dormann et al. 2013;
Table S5). Because alkalinity and pH were correlated, we
retained pH because it is known to limit taxa persistence
and is more easily, accurately and precisely measured than
alkalinity. Therefore, we considered monthly measurements
(during each visit) of conductivity, pH, dissolved oxygen,
total phosphorus and physical habitat structure. We then
evaluated the degree to which predictor variables influenced
initial occupancy, colonization, and extirpation probabilities
of the resistant and sensitive assemblages.

The predictor variables were modelled by using their first
month values for initial occupancy, and then their changes
between month t and month t+ 1 for modelling colonization
and extirpation parameters. For example, both latter param-
eters were modelled for pH as the result of the pH change
between month t and month t+1 (i.e., ApH=pH, — pH,, ).
Finally, we modelled detection probability as a function of
our three different sampling methods (Surber, curlers, peb-
bles) and as a function of the dry and wet periods because
higher dry season abundances may have increased detection
probability.

We assessed detections for 63 Surber-sampled months
and 38 passive-sampled months to determine detection his-
tories for each taxon in each month. We had a limited num-
ber of sites (2) and, therefore, we could not model changes in
the occupancy state through time for any family separately.
Also, we were especially interested in evaluating the degree
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to which changes in the predictor variables influenced col-
onization, extirpation, and occupancy probabilities of the
resistant and sensitive assemblages (i.e., assemblage-level
change) in the months following the spill. Therefore, we
used macroinvertebrate family as an ‘assemblage subunit’
for each site (MacKenzie et al. 2018; pp. 559-560). Specifi-
cally, we recorded whether a family member of a resistant
or sensitive assemblage was detected (1) or not (0) at either
the upstream or spill site for each method in each month.
This approach allowed us to model the parameters of interest
by considering the site-level variables that changed among
months and thereby compare assemblage-level site occu-
pancy among months and between sites.

We also added families that were not detected by us, but
that had the potential to be present in our sites according
to previous studies in the region (Abelho et al. 2010; Boy-
ero et al. 2011). Thus, we added three and eight families
in the resistant and sensitive family list, respectively (see
Table S4). This strategy allowed us to account for possi-
ble false absence families and to estimate the proportion of
families from a list of known size that could occupy the sites
during the study (MacKenzie et al. 2018).

We employed the multi-season occupancy model (Mac-
Kenzie et al. 2003) in Program MARK (White and Burn-
ham 1999) for analyzing the data separately for the resist-
ant and sensitive assemblages, but used month instead of
season. We built 18 models for each assemblage consist-
ing of our a priori hypothesis for initial occupancy (¥,),
colonization (y), extirpation (g), and detection (p) prob-
abilities. The intercept-only model structure or the null
model [Wi (.) e(.) y(.) p(.)], which implies that no pre-
dictor variables influenced the model parameters of inter-
est, was also included in each of the model sets. Using
Akaike’s Information Criterion adjusted for small sample
size (AICc), we considered models with AAICc <2 as the
most likely to be supported by our data (Burnham and
Anderson 2002). We used the maximum likelihood meth-
ods incorporated in Program MARK to obtain estimates
of occupancy, colonization, extirpation and detection of
the resistant and sensitive macroinvertebrate assemblages
among months and sites (MacKenzie et al. 2003). For
example, an encounter history with only two subsequent
months, such as #;=101,000, means that a family present
at the site in the first month was detected by the first and
third sampling method, but not detected by the second
method. Between months, the family was not extirpated
but was never detected in the second month, or was extir-
pated. That mathematically is as follows:

Then, as proposed by MacKenzie et al. (2003), the
model likelihood was calculated according to the equa-
tion below, which considered the encounter histories of
all families in either the resistant or sensitive assemblage
during the 63 months, and where the parameter values
that maximize the likelihood could be obtained by the
following:

N
L &.7.p| by .. .hy) =TT Probability () ®

Results

We detected a total of nine resistant families, seven at
the reference site and nine at the spill site; conversely,
we detected five sensitive families at the reference site
and two at the spill site (see Table S4). Sampling method
affected which biological variables were most capable of
distinguishing differences in macroinvertebrate assem-
blages resulting from the spill (Table 1). No differences
were observed for most metrics: only 7.44% of the met-
rics for Surber, 29.62% for curlers and 18.51% for pebbles
showed significant results. Surber sampling was effective
for family richness and the BMWP index. Both curlers
and pebbles captured the discontinuity for shredders/col-
lectors and % scrapers + collectors. Curlers also distin-
guished discontinuity in total abundance and % resistant
assemblage abundance. Pebbles distinguished discontinu-
ity in the BMWP index and EPT richness. In other words,
two methods detected discontinuity in family richness,
shredders/collectors, % scrapers and filtering-collectors,
BMWP index, and EPT richness. The interrupted time
series analyses also confirmed the results of our prelimi-
nary analysis, showing that abundance variables based on
Surber sampling varied significantly between dry and wet
seasons (Table S2).

Contrary to our prediction, no predictor variable that
we measured influenced the occupancy-related parameters
for the resistant or sensitive assemblages (Table 2). Thus,
the variables that we measured did not influence the colo-
nization, extirpation or occupancy probabilities of those
assemblages between sites and the sewage spill did not
influence those model parameters months after the initial
spill. However, the estimates of the occupancy-related
parameters of those assemblages differed (Fig. 2). Also,
and contrary to our prediction, the proportion of families

Probability(k, = 101000) = y;p, ;(1 ‘P1,2)P1.3X{ (1-¢) H(l —pyy) t e } 2
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Table 1 Interrupted time series analysis results for all variables using the three sampling methods

Variable Surber Curlers Pebbles
F Pr(<F) ES F Pr(<F) ES F Pr(<F) ES

Scrapers/Shredders + Collectors 0.19 0.66 0.003 029 059 0.004 0.31 0.58 0.004
Filtering-collectors/Gathering-collectors 1.52 0.22 0.006 047  0.00 035 046 0.01 0.08
Shredders/Collectors 0.42 0.52 0.02 4751 049 0.006 6.66 0.50 0.006
% Scrapers + Collectors 0.64 0.43 0.009 48.37 0.00 0.35 6.179 0.02 0.08
% Predators 0.00 0.96 >0.001 088 035 0.01  0.08 0.78 0.001
MMI (Ferreira et al. 2011) 0.65 0.42 0.008 123 027 0.01 1.54 0.22 0.02
MMI (Macedo et al. 2016) 0.14 0.71 0.002 031 0578 0.003 0.59 0.45 0.006
MMI (Silva et al. 2017) 1.67 0.20 0.02 058 045 0.007 0.63 043 0.005
Abundance 1.06 0.31 0.01 12.81  0.00 015 204 0.16 0.03
Family Richness 7.32 0.01 0.08 295  0.09*% 0.02  3.96 0.05* 0.05
H' Shannon-Wiener 1.26 0.27 0.02 011 074 0.001 0.20 0.65 0.002
J' evenness 0.06 0.80 >0.001 005 0.82 >0.001 0.00 0.97 >0.001
P’ evenness 0.15 0.70 0.002 003 0.87 >0.001 0.00 0.97 >0.001
BMWP 5.74 0.02 0.07 212 015 0.02 583 0.02 0.07
% Collector-gatherers 0.11 0.74 0.002 3.07 0.08* 0.04 1.31 0.26 0.02
Collector-gatherer abundance 0.89 0.35 0.01 1.37 0.25 0.02 0.09 0.77 0.001
% Chironomidae 0.54 0.47 0.007 2.04 0.16 003 021 0.64 0.003
Chironomidae abundance 0.92 0.34 0.01 140 024 0.02 0.11 0.74 0.001
% EPT 0.017  0.90 >0.001 023  0.63 0.003 043 0.52 0.005
EPT abundance 0.58 0.455 0.007 022 0.64 0.003 1.54 0.22 0.02
EPT richness 0.62 0.43 0.007  3.64  0.06% 0.03 435 0.04 0.04
% Chironomids + Oligochaetes 0.18 0.67 0.002 298  0.09* 004 103 0.31 0.01
Chironomid + Oligochaete abundance 0.89 0.35 0.01 135 025 0.02  0.09 0.77 0.001
% Abundance Resistant 0.01 0.94 >0.001 497 0.03 0.06 094 0.34 0.01
% Richness Resistant 0.87 0.35 0.01 0.07 079 >0.001 1.90 0.17 0.02
% Abundance Sensitive 0.41 0.52 0.005 058 045 0.006  0.65 0.42 0.008
% Richness Sensitive 0.66 0.42 0.007 032 0.8 0.002 0.01 0.91 >0.001

Effect Size (ES; qz) was calculated for all variables
Bold indicates p <0.05, * indicates p <0.1

that occupied the sites increased for the sensitive assem-
blage but decreased for the resistant assemblage. The
colonization and extirpation probabilities for the resistant
assemblage were 0.04 (SE=0.01) and 0.13 (SE=0.02),
respectively, leading to a slightly decreasing occupancy
probability (Fig. 2). On the other hand, the colonization
and extirpation probabilities of the sensitive assemblage
were 0.004 (SE=0.002) and 0.03 (SE=0.01), respec-
tively, leading to a slightly increasing occupancy prob-
ability for the sensitive assemblage (Fig. 2). Also, the pro-
portion of families that occupied the sites during our study
was very low compared to the regional list of resistant and
sensitive families. The average occupancy probability was
0.24 (range =0.23-0.32) for the resistant assemblage and
0.11 (range =0.08-0.13) for the sensitive assemblage.

The detection probability of the resistant assemblage
was higher for Surber sampling (p =0.73; SE=0.04)
than curlers (p =0.64; SE=0.04) or pebbles (p =0.59;
SE =0.04), but did not differ substantially between the
dry and wet periods. Conversely, the detection probability
of the sensitive assemblage was not influenced by any of
the three sampling methods, but it did differ between the
dry and wet periods. Nonetheless, the null (i.e., intercept
only) model was also supported by our data, meaning that
the dry and wet season effect on detection probability of
the sensitive assemblage was weak. In fact, the model-
averaged estimates of detection probability of the sensi-
tive assemblage between the seasons were very similar:
0.24 (SE=0.05) and 0.26 (SE=0.03) for the wet and dry
seasons, respectively.
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Table 2 Model selection results

i Model AlICc A AICc  AICc Weights Num.Par  Deviance
for initial occupancy (¥;),
colonization (y), extirpation (g), Resistant taxa
:‘;‘:ﬂ‘:f;f:;":nﬁpze‘;‘;:’;:”:sjzﬁc {%,()e(.)y(.)p(Method) } 139394 000 045 6 1381.89
macroinvertebrates (¥,(P)e(P)y(P)p(Method)} 139606 212 0.16 9 1377.94
{¥,(C)(C)y(C)p(Method) } 1397.33 339 0.08 9 1379.21
{¥,(DO)e(DO)y(DO)p(Method) } 1397.67  3.73 0.07 9 1379.55
(Z,0ey(pO)} 139825 431 0.05 4 1390.22
{(¥,(PHS)e(PHS)y(PHS)p(Method)} 139834 4.40 0.05 9 1380.22
{¥;(PH)e(PH)y(PH)p(Method) } 1398.70 4.76 0.04 9 1380.58
{¥;(De()y(-)p(Season)} 1399.40 5.45 0.03 5 1389.36
(Z.P)e@yP)p()} 140086  6.92 0.01 7 1386.79
{¥,(P)e(P)y(P)p(Season)} 140171 7.77 0.01 8 1385.62
{¥,(Oe(Cyy(O)p()} 140176  7.82 0.01 7 1387.69
{¥,(0)e(DO)y(DO)p(.)} 1401.85  7.91 0.01 7 1387.77
{¥,(C)e(C)y(C)p(Season) } 1402.78  8.84 0.01 8 1386.68
{¥;(PHS)e(PHS)y(PHS)p(.)} 1402.86 8.92 0.01 7 1388.78
{¥,(DO)e(DO)y(DO)p(Season)} 1403.01  9.06 0.00 8 1386.91
{(¥,(PH)e(PH)Y(PH)p(.)} 140334 9.40 0.00 7 1389.26
{(¥,(PHS)e(PHS)y(PHS)p(Season)} ~ 1403.95  10.01 0.00 8 1387.85
{¥,(PH)e(PH)y(PH)p(Season) } 1404.15 1021 0.00 8 1388.05
Sensitive taxa
{¥iOeCy(OpL)} 515.27 0.00 0.35 4 507.25
{¥,()e(.)y()p(Season)} 51689  1.62 0.16 5 506.85
{W,(PHS)e(PHS)y(PHS)p(Season) } 51847  3.20 0.07 8 502.38
{¥,(C)e(C)y(C)p(Season) } 51867  3.40 0.06 8 502.58
{¥,(PH)e(PH)y(PH)p(Season) } 518.69 342 0.06 8 502.61
{¥;()e()y(.)p(Method) } 519.03 3.76 0.05 6 506.98
{¥,(DO)e(DO)y(DO)p(Season)} 51909  3.82 0.05 8 503.01
{(¥,(P)e(P)y(P)p(Method)} 52007 479 0.03 9 501.96
{(¥,P)eP)y(P)p(.)} 52027  5.00 0.03 7 506.20
{\¥,(PH)e(PH)y(PH)p(Method) } 520.89  5.62 0.02 9 502.78
{W,(PHS)e(PHS)y(PHS)p(.)} 521.18 591 0.02 7 507.11
{¥,(C)e(C)y(C)p(Method) } 52124 597 0.02 9 503.13
{¥;(P)e(P)y(P)p(Season)} 521.30 6.03 0.02 8 505.21
{¥,(DO)e(DO)y(DO)p(Method) } 52150  6.23 0.02 9 503.39
(¥, (PH)e(PH)y(PH)p(.)} 52190  6.63 0.01 7 507.83
{,(C)e(CHy(O)p()} 52223 696 0.01 7 508.16
{¥,(DO)e(DO)Y(DO)p(.)} 522.61 733 0.01 7 508.54
{¥,(PHS)e(PHS)y(PHS)p(Method) } 52428 9.01 0.00 9 506.17
¥, y and & modelled as functions of phosphorus (P), conductivity (C), dissolved oxygen (DO), pH, and
physical habitat structure (PHS). p modelled as function of method type (Method: Surber, Curlers, Pebbles)
and dry and wet seasons
Discussion season sampling (Feio et al. 2015; Fierro et al. In Press).

Sampling methods and metrics

The results of our preliminary analyses showed that abun-
dance-related metrics varied significantly between dry and
wet seasons (Table S2), with significantly higher values in
the dry season. Therefore, we recommend that future neo-
tropical biomonitoring projects invest less on rainy and dry

@ Springer

Instead, we recommend that available resources be used
to sample more sites and more stations over more years to
detect spatial and temporal trends and reduce sampling vari-
ance (Larsen et al. 2004; Hughes and Peck 2008; Callisto
et al. 2019). Furthermore, because of lower accessibility
of some sites during the wet season and crew safety, some
sites are best sampled in the dry season (Hughes and Peck
2008). Besides, during the end of the dry season, most insect
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Fig.2 Probability of occupancy (+SE) of the resistant (black dots)
and sensitive (white dots) assemblages of aquatic macroinverte-
brates sampled in 63 months (2006-2015). The sewage spill occurred
from November 2008 to April 2009 (month or season 13-16). The
occupancy probability of each assemblage is from the most parsi-
monious model of Table 2 and the black and white triangles are the
naive occupancy for the resistant and sensitive assemblages, respec-

taxa are close to emerging, meaning that individuals will
be larger and easier to detect and identify (Martins et al.
2017; Agra et al. 2018; Castro et al. 2018, 2020; Ligeiro
et al. 2013). Last, during the rainy season, macroinverte-
brate drift dislodges many organisms downstream (Callisto
and Goulart 2005; Castro et al. 2013a, b), resulting in lower
abundances, whereas the lower dry season flows are more
likely to be impaired by pollution discharges.

Our predictions from objective 1 were only partially sup-
ported (Table 1). None of the three MMIs detected differ-
ences in macroinvertebrate assemblages resulting from the
sewage spill as predicted, but the single metrics (BMWP,
shredders/collectors, % scrapers + collectors and EPT rich-
ness) detected differences for two sampling methods. Family
richness detected differences for all three sampling meth-
ods, whereas abundance, % collector-gatherers, % chirono-
mids + oligochaete and % resistant taxa abundance did so for
one method. Family richness was the most successful metric
and it is a widely used indicator alone and in MMIs (Ruaro
et al. 2020). EPT richness was responsive with two sampling
devices. Stoddard et al. (2008) found that EPT richness was
an effective indicator of disturbance in seven of nine USA
ecoregions. The curlers and pebbles employed only in the
dry months detected discontinuity in shredders/collectors
and % scrapers + collectors. Thus, we assume that focusing
on season and artificial substrates removes some natural var-
iability from macroinvertebrate sampling, thereby improv-
ing the usefulness of functional group indicators. However,

30 33 36 39 42 45 48 51 54 57 60 63
Season

tively. The naive occupancy did not account for imperfect detection
and related to the number of families of each assemblage that we
observed at each site in each month divided by the total number of
families of each assemblage. Because differences between sites were
not important, we calculated the naive occupancy for each assem-
blage by averaging the naive occupancy between sites

Ligeiro et al. (2020) found that single-habitat sampling (leaf
packs) reduced macroinvertebrate assemblage responsive-
ness along a disturbance gradient.

There are advantages and disadvantages to using artificial
substrate samplers. Letovsky et al. (2012) found that arti-
ficial substrate sampling produced lower abundances, spe-
cies richness, evenness, and diversity. Nonetheless, Guild
et al. (2014) recommended artificial substrates for sampling
water quality impacts on aquatic macroinvertebrates. How-
ever, they also reported that artificial substrate samplers
were biased toward colonizing taxa. In addition, artificial
substrate samplers require at least two site visits and are
susceptible to anthropogenic and natural disturbances (fresh-
ets, droughts) if not carefully placed. For both artificial
substrates that we used, we found significant differences
in metrics that serve as proxies for ecosystem functions.
Artificial substrate samplers have been reported to provide
results more sensitive to disturbances in water quality than
Surber samplers (Letovsky et al. 2012; Guild et al. 2014).
Our results corroborate this, suggesting that the artificial
substrates provided data sensitive enough to detect water
quality differences caused by the sewage spill that would
have been missed by Surber sampling. Although sampling
device choice depends on the study objectives, logistics, and
costs (Hughes and Peck 2008), we recommend using artifi-
cial substrates rather than Surber samplers for assessing sew-
age effects on benthic macroinvertebrates. Besides, we spe-
cifically recommend that routine biomonitoring programs,
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either by State Agencies or Private Companies, should
include the use of artificial substrates in their monitoring.
Although the sewage spill did not affect the long-term
occupancy of the families measured by the occupancy
models, its effects did disrupt several metrics, such as
taxa richness, which is analogous to occupancy probabil-
ity here. Occupancy can be viewed as the proportion of
families within each of the assemblages that occupied the
sites throughout the 10 years of sampling. However, we are
unsure if the effects revealed by the time-interrupted series
analysis resulted from anthropogenic disturbances or natural
disturbances (freshets, droughts, fires) that were not consid-
ered in this analysis. Also, the effects on total family richness
of imperfect detection, colonization, and extirpation of the
families during this study and others deserves further inves-
tigation. In addition, detection differences indicate the need
for rigorous site-scale sampling (Li et al. 2001, 2014; Cao
et al. 2002; Hughes and Peck 2008) and sample processing
(Li et al. 2014; Ligeiro et al. 2020) of macroinvertebrates.

Occupancy probabilities

Our assessment revealed that site colonization, extirpa-
tion, and occupancy probabilities of resistant and sensitive
assemblages were not influenced by the predictor variables
measured before and after a sewage spill nor between sites,
contrary to what we predicted (objective 2). However, the
Surber sampler was more efficient in detecting the resist-
ant assemblage than the curlers or pebbles as predicted
(objective 3). This can be explained by the association of
the most abundant families of this category, Chironomidae
and Tubificidae, with soft substrates (White 2014; Corbi and
Trivinho-Strixino 2017). Therefore, these families would
have had more difficulty in colonizing the hard-artificial
substrates. A possible explanation is the lower amounts of
fine particulate organic matter (FPOM) retention on the arti-
ficial substrates compared to the streambed because resistant
taxa are collector-gatherers that feed on FPOM (Cummins
et al. 2005; Callisto and Graga 2013; Canning et al. 2019).
However, the probability of detecting the sensitive assem-
blage did not differ among methods, even though this prob-
ability was slightly higher in the dry period. Although the
seasonal effect on detection of sensitive families was weak,
our strength of inference was hampered by the fact that we
sampled only two stream sites.

The overall persistence (1—¢) of benthic macroinverte-
brates was higher for the sensitive assemblage than for the
resistant assemblage contrary to our prediction (objective 2),
which means that the probability of the sites being occupied
in successive months was higher for the former than the
latter. On the other hand, the site colonization probability
of both assemblages remained unaltered months after the
sewage spill, which indicates their resilience. These results
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suggest recovery, if not a slight improvement, of the general
environmental quality of our sites during our 10-year study.
Although we observed a slight increase in occupancy proba-
bility of the sensitive assemblage, the proportion of families
that occupied the two sites during the study was very low
compared to our known list of resistant and sensitive fami-
lies, being an average occupancy probability of 0.24 (range:
0.23-0.32) for the former and 0.11 (range: 0.08-0.13) for
the latter. This means that~76% and 89% of the potential
resistant and sensitive families, respectively, were not pre-
sent in the two sites. One might conclude that this indicates
the overall poor quality of the sites. More likely, those low
proportions of families occupying the two sites compared to
those occurring in the basin may simply reflect the high beta
richness of Cerrado streams (Ligeiro et al. 2010) and the fact
that our two sites cannot represent all families occurring in
an entire river basin (Callisto et al. 2019; Castro et al. 2020;
Ligeiro et al. 2010). That high beta richness is also a func-
tion of numerous uncommon or rare families (see Table S4).
Although far from attaining an ideal state given its other
stressors, the apparent improvement of site P2 following the
spill indicates the natural recovery potential of peri-urban
streams (Yeakley et al. 2014; Franca et al. 2019).

Biomonitoring recommendations

South American nations lack environmental laws and regula-
tions that support the biomonitoring of freshwaters through
use of standard methods and indicators (Buss et al. 2015).
Therefore, South American countries also lack standard
protocols for conducting cost-effective biomonitoring of
sewage discharges—despite their widespread occurrence
and ecological impacts. For example, 40% of Brazilian
cities and 100 million citizens have no sewage collection
or treatment (Wwww.ibge.gov.br). However, the Brazilian
Congress recently approved a New Regulatory Framework
for Basic Sanitation ("Novo Marco Regulatério do Sanea-
mento Basico"; Law Project 4162/2019). Its goal is universal
water supply and sewage treatment by 31 December 2033. It
encourages investments in, and improvement of, water qual-
ity indicators and services by attracting private companies to
invest 700 billion Brazilian reais (113 billion USA dollars).

Benthic macroinvertebrates are the most studied assem-
blages in stream communities to understand the effects of
urbanization (Gél et al. 2019). Although our study was based
on only two sites monitored for 10 years, our results help
lay the foundations for future studies that use macroinver-
tebrate assemblages for water quality assessment, taking
into account parameters such as colonization, extinction
and detection. Based on our results, we recommend bio-
monitoring sewage effects nationally only in the dry sea-
son, using pebble-filled mesh bags, and employing family
richness, BMWP, EPT richness, shredders/collectors, and %
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scrapers + collectors as indicators (Buss et al. 2015; Cum-
mins et al. 2005, Fierro et al. 2021). We also favor monitor-
ing multiple stream sites upstream and downstream of the
sewage discharge to better detect the effects of those dis-
charges and to help implement their mitigation as described
in Yoder et al. (2019). Such a set of standard methods
employed by differing institutions would also facilitate data
exchanges and more comprehensive assessments than are
possible by single institutions (Mulvey et al. 2009; USEPA
2016; Callisto et al. 2019; Paulsen et al. 2020).

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10201-021-00680-0.
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