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A B S T R A C T

Reservoirs are a common sight in most rivers systems in the world and a frequent problem related to them is the
introduction of non-native invasive mollusk species. We aimed to determine which local variables (near-site land
use, physical habitat structure, water quality) were most strongly associated with the local distribution of in-
vasive non-native mollusks in neotropical hydropower reservoirs. We used data from three neotropical reservoirs
to calculate which local variables most influenced the presence or absence of the three non-native invasive
mollusk species (i.e., Corbicula fluminea, Limnoperna fortunei andMelanoides tuberculata) found in them. We found
that the presence of both C. fluminea and L. fortunei were positively correlated with local anthropogenic dis-
turbances, likely because it was associated with more frequent human access to the water body and increased
introductions of larval mollusks. Conversely, M. tuberculata was negatively correlated with total phosphorus
concentration, which is linked to agriculture and urbanization in the reservoir catchments. Additionally, we
found that C. fluminea and M. tuberculata presence was positively related to each other, implying a biological
facilitation process between these two species. Our findings suggest that anthropogenic disturbances are im-
portant for the local distribution of invasive non-native mollusks in neotropical reservoirs and can be used by
environmental managers and decision-makers to help manage invasive mollusk populations in neotropical hy-
dropower reservoirs.

1. Introduction

Dams and reservoirs are an increasingly common sight in river
systems worldwide, because of increased demands for drinking water
and energy sources (Anderson et al., 2015). These human-altered ha-
bitats provide many ecosystem services to human populations, such as
recreational areas, water storage and supply, and food sources
(Fearnside, 2014). Despite these benefits, dams and reservoirs also
cause alterations in lotic ecosystem structure and function, including
facilitation of biological invasions, thereby threatening the ecosystem
services they provide (Poff et al., 2010; Stanford and Ward, 2001;
White, 2014).

Biological invasions are the second most important cause of biodi-
versity loss globally (Mack et al. 2000; Simberloff et al. 2013; Thomaz
et al. 2015; Reid et al. 2018). This ecological process is especially

common in hydropower reservoirs, where the anthropogenically al-
tered ecological conditions facilitate the introduction and establishment
of non-native invasive species (Boltovskoy and Correa, 2015; Karatayev
et al., 2007b; Linares et al., 2019; Ricciardi, 2007). Mollusks are one of
the most successful groups of freshwater invasive species in reservoirs
because their physiological and ecological adaptations confer the ca-
pacity to reproduce and generate fertile offspring with a high prob-
ability of survival (Bosso et al., 2017; Jarić et al., 2019; Karatayev et al.,
2007a, Xiong et al., 2018). Another important factor is that many non-
native invasive mollusk species act as ecosystem engineers, species that
alter the physical habitats and biological processes of the ecosystems
where they establish themselves (Jones et al., 1994). This means that
these species can become important factors in the structure and func-
tion of the ecosystems where they are prevalent (Egan 2017; (Linares
et al., 2017).
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Most studies of mollusk invasive species in reservoirs focus on the
role of these human-made ecosystems in the invasive mollusks estab-
lishment in regional scales (Johnson et al., 2008; Nakano et al., 2015;
Oliveira et al., 2011) or their effects on the structure and function of
benthic communities (Boltovskoy et al., 2009; Linares et al., 2018,
2017). Therefore, there is a gap in the knowledge regarding what local
habitat factors explain the establishment of invasive mollusks popula-
tions and their local site distribution inside hydropower reservoirs.

Mollusk invasive species are prevalent in reservoirs and other
freshwater ecosystems in South America (Karatayev et al., 2007a).
Having likely arrived in the continent in ballast water (Simberloff et al.,
2013), these species were initially registered in the 60′s and 70′s in
river basins with ports associated with international commerce, such as
the Plata and Paraná river basins, and in the following decades they
spread to be present in all major river basins in the continent (Barbosa
et al., 2018). Invasive mollusks can cause significant ecological impacts,
mainly due to alterations in the physical habitat and in the ecosystem
functioning (Linares et al., 2017, 2019), and economic impacts, mainly
by their biofouling activity in water-dependent economical activities
such as hydropower generation (Sousa et al., 2013).

Our objective was to determine which local factors (near-site land
use, physical habitat structure or water quality) are most important for
the local-site distribution of non-native invasive mollusk species in
neotropical hydropower reservoirs in which these species occur. We
hypothesized that local anthropogenic disturbances would increase the
presence probability of invasive mollusks, and thus we expected that
variables that are linked to local anthropogenic disturbances would be
the most determinants to influence the local distribution of the three
species of invasive mollusks.

2. Material and methods

2.1. Study area

We used data from three Neotropical hydropower reservoirs (Nova
Ponte, Três Marias and Volta Grande; Supplementary Material S1), lo-
cated in the State of Minas Gerais, southeastern Brazil (Fig. 1). In each
reservoir we defined 40 sampling sites through use of random spatially
balanced procedures (Macedo et al., 2014; Stevens and Olsen, 2004),
focusing on the littoral zone, which is the area with the highest richness
and diversity (Martins et al. 2015; de Morais et al. 2017). From a
randomly selected point, sampling sites were systematically distributed
by dividing the perimeter into at equidistant distances from each other
(Macedo et al., 2014). In total, we selected 120 sampling sites, 40 in
each reservoir. Samplings occurred in 2010 (Nova Ponte), 2011 (Três
Marias), and 2012 (Volta Grande) in April, at the end of the rainy
season, ensuring that the reservoirs were at the highest possible water
level and consequently with the highest possible habitat diversity
(Callisto et al., 2019).

2.2. Local variable assessment

To assess the physical habitat variables, we followed the metho-
dology described by Kaufmann et al. (2014) and de Morais et al. (2017).
At each sampling site, human disturbance, vegetation cover, shoreline
morphology and substrate type were recorded. Subsequently, those
data were used to calculate a series of physical habitat metrics
(Supplementary Material S2).

Additionally, in each sampling site, we measured water tempera-
ture, pH, electrical conductivity and total dissolved solids in situ with a
multiprobe Yellow Spring (model YSI 6600), total depth with a hand-
held SONAR unit, euphotic zone depth with a Secchi disk, and turbidity
with a turbidimeter (Digimed - model DM-TU). We also took water
samples for laboratory determination of chlorophyll-a, pheophytin,
total nitrogen and total phosphorus concentrations using Standard
Methods procedures (APHA – American Public Health Association,

2005). All these variables are widely used by several studies in neo-
tropical reservoirs because they are good predictors of the presence or
absence of invasive mollusks (e.g., Anacléto et al., 2018; Azevedo et al.,
2017; de Morais et al., 2017; Martins et al., 2015; Molozzi et al., 2013).

For estimating local land use and cover, we used a 500-m diameter
buffer zone centered on each sampling site. The buffer land use and
cover were delimited on an image obtained through a TM sensor on-
board the Landsat 5 satellite, taken during the sampling periods. Inside
each buffer, polygons for the definition and quantification of land use
categories were delimited and classified (natural cover, pasture, agri-
culture and buildings), and computed as percentage. Images obtained
from Google Earth satellite images (Google Corporation) were em-
ployed as ancillary data in this assessment (de Morais et al., 2017;
Macedo et al., 2014). Additionally, we calculated the Integrated Dis-
turbance Index (Ligeiro et al. 2013; de Morais et al. 2017). This index
was calculated using site physical habitat disturbance (Local Dis-
turbance Index - LDI) and the disturbance of land use in a buffer zone of
500 m (Buffer Disturbance Index - BDI). BDI was estimated using the
land use percentages weighted by the intensity of disturbance they
represent (Ligeiro et al. 2013), modified for use in reservoirs (de Morais
et al., 2017). It was calculated using the following formula:

= × + × + +

+

BDI (Buffer Disturbance Index)

4 (%residential) 2 (%agricultural areas % bare soil)

(%pasture % Eucalyptus)

LDI was calculated using the index of the near-shore anthropogenic
disturbance intensity and extent (RDis_IX) (Kaufmann et al. 2014).

2.3. Invasive mollusk sampling

In the littoral zone of each site, we sampled benthic macro-
invertebrate assemblages by using three Eckman-Birge grabs
(0.0675 m2 total area). The samples were stored in plastic bags and
fixed in 10% formalin, then they were washed through a sieve (0.5 mm
mesh) in the laboratory. Invasive mollusks were identified to species
under a stereomicroscope using specialized literature (Mugnai et al.
2010; Simone 2006). Sampling sites were then classified with each
identified invasive mollusk species as detected (1) or non-detected (0).
All specimens collected were fixed in 70% alcohol and deposited in the
Reference Collection of Benthic Macroinvertebrates, Instituto de Ciên-
cias Biológicas, Universidade Federal de Minas Gerais.

2.4. Data analysis

To explore our hypothesis that local anthropogenic disturbance in-
creases the probability of invasive mollusks presence, we used a model
selection approach (Burnham and Anderson, 2002). We first tested for
correlation among our continuous variables (Supplementary Material
S3), eliminating those that were highly correlated (|r| ≥ 0.7) and re-
taining the most ecologically relevant metrics, which were chosen
based on previous knowledge from the scientific literature (Anacléto
et al., 2018; de Morais et al., 2017; Martins et al., 2015). Subsequently,
we used our selected variables as predictor variables in three general-
ized linear models (GLMs) with a binomial distribution, where the re-
sponse variables in each of the GLMs were the detection/non-detection
of the invasive species. Using our most parameterized model, we
evaluated for a possible lack of fit (i.e., overdispersion; ̂c > 1) in each
analysis. Likewise, because the sampling units placement may resulted
in a lack-of-independence (or spatial autocorrelation) among our sites,
we performed a Moran’s I test for spatial autocorrelation (Lecocq et al.,
2019; Smeraldo et al., 2020) using the residuals of our most para-
meterized model in each of the three GLM analysis, using the spdep
package (version 1.1.2; Bivand and Wong, 2018) in R (R Development
Core Team, 2015). We then constructed models based on all possible
additive variable combinations that may have influenced the
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probabilities of presence for each of the invasive species (Doherty et al.,
2012). Importantly, the intercept-only model structure (i.e., null model)
was also included in each of the model sets. This strategy resulted in a
balanced model set for each analysis, which allowed us to calculate the
cumulative AICc weights (w+) for each variable and evaluate which
were the most likely (w+ ≥ 0.50) to have influenced the presence for
each of the invasive species (Burnham and Anderson, 2002). For C.
fluminea and M. tuberculata we used data from all 120 sampling sites.
Because L. fortunei was detected only in the Volta Grande reservoir, we
used only the 40 sites of this reservoir. Statistical analyses were im-
plemented using the MuMIn package (Bartón, 2019) in R.

3. Results

Three invasive mollusk species were identified in our sampling sites:
Corbicula fluminea (Bivalvia: Corbiculidae), Limnoperna fortunei
(Bivalvia: Mytilidae) and Melanoides tuberculata (Gastropoda:
Thiaridae). Both C. fluminea and M. tuberculata were found in all three
reservoirs, in a total of 38 (31.66%) and 36 (30.00%) sites, respectively.
L. fortunei was only found at 11 (9.17%) sites in Volta Grande reservoir.

A total of 26 metrics remained after our screening process (Table 1).
Among them, Presence of Non-Agricultural Disturbances in the Ri-
parian zone, Riparian Vegetation Cover Complexity Index, Littoral
Cover Complexity Index, Littoral–Riparian Habitat Complexity Index,
Buffer Zone Disturbance Index and Local Disturbance Index were con-
sidered metrics of direct human disturbance.

We did not find any evidence of overdispersion in our analyses (i.e.,
̂c = 1 for all GLM’s). Also, the results of the Moran’s I test revealed a

lack of spatial autocorrelation among our sampling units (P-value >
0.05 for all Moran’s I tests; Supplementary Material S4). The most
important predictor variables differed for the three mollusk species
Table 2). The presence of Corbicula fluminea was linked positively with

the presence of M. tuberculata and with the area of overhanging fish
cover and negatively with electrical conductivity and the Littoral-Ri-
parian Complexity Index. The presence of Melanoides tuberculata was
negatively linked with total phosphorus concentration and positively
linked with the presence of C. fluminea. Limnoperna fortunei presence
was positively linked with the Buffer Zone Disturbance Index (BDI) and
negatively linked with the area of emergent macrophytes.

4. Discussion

Our results partially corroborated our hypothesis that the presence
of local anthropogenic disturbances increase the chance of finding non-
native invasive mollusk species in the three studied reservoirs. Both C.
fluminea and L. fortunei local distributions were linked with anthro-
pogenic disturbance, namely a negative relation with the Littoral-
Riparian Complexity Index for C. fluminea and a positive relation with
the Buffer Zone Disturbance Index for L. fortunei. On the other hand, M.
tuberculata presence showed a negative correlation with total phos-
phorus concentration, an indicator of agricultural and urban dis-
turbances in the reservoir catchment.

The positive correlation of the local distribution of both C. fluminea
and L. fortunei with anthropogenic disturbances may be explained by
the facilitation of human access to the hydropower reservoir. Human
access to the water body is likely related to increased accidental in-
troductions of larvae from recreational activities and water abstraction
(de Marco Júnior 1999; Johnson et al. 2008; Lercari and Bergamino
2011; White 2014) as well as initial intentional introductions. This
manmade increase of propagules is important for the distribution of
invasive species, especially for sessile ones like these two bivalve spe-
cies (Dias et al., 2014; Karatayev et al., 2007b; Zhan et al., 2015). Other
studies found similar results, indicating that human access to the water
body is related to the introduction and maintenance of these species in

Fig. 1. Location of Nova Ponte, Volta Grande and Três Marias reservoirs and distribution of sampling sites.
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reservoirs (Barbosa et al., 2018; Sousa et al., 2013).
The negative correlation of the presence of M. tuberculata with total

phosphorus concentration suggests that this species is negatively af-
fected by diffuse anthropogenic impacts. Both of these metrics are as-
sociated with diffuse human disturbances in the catchment of hydro-
power reservoirs (Junqueira et al., 2016; Silva et al., 2017). Such
impacts can also increase the amount of fine sediment deposition in the
reservoir (Hawkins and Murphy, 2016; Kaufmann et al., 2009). Feeding
primarily on periphyton (Cummins et al., 2005), M. tuberculata benefits
from hard substrates, that can become embedded by fine sediments
thereby reducing or eliminating periphyton. Previous studies in neo-
tropical freshwaters found similar indications that M. tuberculata is re-
lated to hard substrates (Linares et al., 2017, 2018, 2019).

The strong correlation of C. fluminea and M. tuberculata might result
from a process of biological facilitation. Because of its digger habit, C.
fluminea can easily colonize the soft bottom substrate that usually
characterizes reservoirs (Crespo et al., 2015; Darrigran, 2002;
Karatayev et al., 2003). Over time their hard shells can accumulate and
provide a modified hard substrate (Jones et al., 1994), facilitating the
colonization of species associated with hard substrates, such as M. tu-
berculata. Also, because they are powerful filter feeders, C. fluminea
provides a strong link between production in the water column and
benthic habitats. Resources produced in the water column captured by
invasive bivalves may then become available to benthic communities in
the form of their feces and pseudo-feces and can constitute an important
food source for other benthic animals (Sardiña et al., 2008). This can
open a new energetic pathway for the benthic community, an ecological
effect observed in previous studies elsewhere (Linares et al., 2018,
2017).

5. Conclusions

Our results provide important tools for environmental managers and
decision-makers in the complex process of managing invasive mollusk
species in neotropical hydropower reservoirs. They highlight the im-
portance of natural macrophyte cover in the littoral zone to prevent the

Table 1
Metrics used to determine which local factors (near site land use, physical habitat structure or water quality) were most important for the local-site distribution of
non-native invasive mollusk species in neotropical hydropower reservoirs. Mean and range (minimum–maximum) of each continuous predictor variable were
calculated from 120 sampling sites. For Corbicula, Melanoides and Limnoperma we used whether we detected (1) Corbicula fluminea, Melanoides tuberculata and
Limnoperna fortunei or not (0) at each sampling site as a categorical predictor variable. See methods for details.

Metrics Metric Type Description Mean (min–max)

Depth Physicochemical Water Depth (m) 0.94 (0.80–1.00)
Secchi Physicochemical Secchi Disc Depth (m) 0.94 (0.2–3.0)
Water_Temp Physicochemical Water Temperature (°C) 23.74 (18.68–24.98)
pH Physicochemical Water pH 9.24 (6.74–12.60)
Conductivity Physicochemical Water Electrical Conductivity (µS/cm) 27.9 (19.00–33.00)
Turbidity Physicochemical Water Turbidity (NTU) 2.28 (0.57–8.45)
Dissolved_O Physicochemical Water Dissolved Oxygen Concentration (mg/L) 8.35 (1.40–10.70)
Total_P Physicochemical Water Total Phosphorus Concentration (µ/L) 7.43 (0–49.34)
Chlorophyll_a Physicochemical Water Chlorophyll a Concentration (mg/L) 0.51 (0–3.55)
hiiNonAg_Ind Physical Habitat Presence of Non-Agricultural Disturbances in the Riparian Zone (Kaufmann et al 2014) 0.75 (0–4.10)
rvfcGndWoody Physical Habitat Mean Ground Cover Area of Woody Vegetation (Kaufmann et al. 2014) 0.19 (0.04–0.25)
rviLowWood Physical Habitat Sum of Mean Low Layers of Canopy Cover (Kaufmann et al. 2014) 0.51 (0.10–1.06)
RvegQ_2 Physical Habitat Riparian Vegetation Cover Complexity Index (Kaufmann et al. 2014) 0.10 (0.02–0.27)
fcfcLivetrees Physical Habitat Mean Area of Living Trees Fish Cover (Kaufmann et al. 2014) 0.05 (0–0.22)
fcfcOverhang Physical Habitat Mean Area of Overhang Fish Cover (Kaufmann et al. 2014) 0.19 (0–0.7)
fcfcSnag Physical Habitat Mean Area of Snag Fish Cover (Kaufmann et al. 2014) 0.03 (0–0.24)
fcfcAquatic Physical Habitat Mean Area of Aquatic Fish Cover (Kaufmann et al. 2014) 0.19 (0–0.87)
amfcSubmerg Physical Habitat Mean Cover Area of Submerged Macrophytes (Kaufmann et al. 2014) 0.15 (0–0.87)
amfcEmergent Physical Habitat Mean Cover Area of Emergent Macrophytes (Kaufmann et al. 2014) 0.13 (0–0.79)
LitCvrQ_b Physical Habitat Littoral Zone Cover Complexity Index (Kaufmann et al. 2014) 0.50 (0.12–1.08)
LitRipHQ Physical Habitat Littoral–Riparian Habitat Complexity Index (Kaufmann et al. 2014) 0.38 (0.08–0.67)
BDI Disturbance Buffer Zone Disturbance Index (Ligeiro et al. 2013) 0.38 (0–0.79)
LDI Disturbance Local Disturbance Index (Ligeiro et al. 2013) 0.53 (0–1.56)
Corbicula Biological Detection of Corbicula fluminea –
Melanoides Biological Detection of Melanoides tuberculata –
Limnoperna Biological Detection of Limnoperna fortunei –

Table 2
Cumulative AICc weights (w+) and estimates of variable effects (β parameters)
for predictor variables used to model the local presence probability of invasive
mollusk species in neotropical hydropower reservoirs. Values of w+ in bold are
those considered to be more likely (w+ ≥ 0.50). Estimates of variable effects
are based on the most parsimonious model that included that variable and are
given only for variables with w+ ≥ 0.50.

Metrics Corbicula fluminea Melanoides
tuberculata

Limnoperna fortunei

w+ β w+ β w+ β

Depth <0.01 – 0.06 – 0.06 –
Secchi < 0.01 – 0.05 – 0.05 –
Water_Temp 0.06 – 0.12 – 0.05 –
pH 0.02 – 0.06 – 0.05 –
Conductivity 0.74 −0.16 0.40 – 0.06 –
Turbidity 0.15 – 0.05 – 0.07 –
Dissolved_O 0.1 – 0.06 – 0.26 –
Total_P 0.07 – 0.92 −0.31 0.06 –
Chlorophyll_a 0.02 – 0.28 – 0.08 –
hiiNonAg_Ind 0.04 – 0.05 – 0.17 –
rvfcGndWoody <0.01 – 0.04 – 0.08 –
rviLowWood 0.01 – 0.05 – 0.20 –
RvegQ_2 0.01 – 0.12 – 0.08 –
fcfcLivetrees 0.05 – 0.09 – 0.18 –
fcfcOverhang 0.59 10.44 0.04 – 0.29 –
fcfcSnag 0.05 – 0.04 – 0.08 –
fcfcAquatic 0.05 – 0.04 – 0.06 –
amfcSubmerg 0.07 – 0.09 – 0.85 −50.33
amfcEmergent 0.03 – 0.04 – 0.05 –
LitCvrQ_b 0.02 – 0.07 – 0.16 –
LitRipHQ 0.64 −10.65 0.18 – 0.07 –
BDI 0.08 – 0.04 – 0.58 17.43
LDI 0.19 – 0.05 – 0.06 –
Corbicula – – 0.97 2.27 0.06 –
Melanoides 0.99 3.74 – – 0.05 –
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establishment of invasive mollusk species.
Our results are especially important for the management of hydro-

power reservoirs that double as human consumption reservoirs. Such
reservoirs usually have oligotrophic conditions and good water quality.
However, anthropogenic disturbances next to their margins and in their
catchments facilitate the establishment of non-native invasive species.
Therefore, human consumption reservoirs need special attention to
prevent damage caused by these species.
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