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• Benthic macroinvertebrate assem-
blages’ diversity is not affected by
canopy cover.

• Benthic macroinvertebrate assemblages
to build a more complex structure in
open canopy streams.

• Autochthonous production is the main
energy source in Neotropical headwater
streams.
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Riparian vegetation cover influences benthic assemblages structure and functioning in headwater streams, as it
regulates light availability and autochthonous primary production in these ecosystems.Secondary production, di-
versity, and exergy-based indicators were applied in capturing how riparian cover influences the structure and
functioning of benthicmacroinvertebrate assemblages in tropical headwater streams. Four hypotheseswere test-
ed: (1) open canopy will determine the occurrence of higher diversity in benthic macroinvertebrate assem-
blages; (2) streams with open canopy will exhibit more complex benthic macroinvertebrate communities (in
terms of information embedded in the organisms' biomass); (3) in streams with open canopy benthic macroin-
vertebrate assemblages will be more efficient in using the available resources to build structure, which will be
reflected by higher eco-exergy values; (4) benthic assemblages in streams with open canopy will exhibit more
secondary productivity. We selected eight non-impacted headwater streams, four shaded and four with open
canopy, all located in the Neotropical savannah (Cerrado) of southeastern Brazil. Open canopy streams consis-
tently exhibited significantly higher eco-exergy and instant secondary production values, exemplifying that
these streamsmay supportmore complex and productive benthicmacroinvertebrate assemblages. Nevertheless,
diversity indices and specific eco-exergy were not significantly different in shaded and open canopy streams.
Since all the studied streamswere selected for being considered as non-impacted, this suggests that the potential
represented bymore available food resources was not used to build a more complex dissipative structure. These
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results illustrate the role and importance of the canopy cover characteristics on the structure and functioning of
benthicmacroinvertebrate assemblages in tropical headwater streams,while autochthonous production appears
to play a crucial role as food source for benthic macroinvertebrates. This study also highlights the possible appli-
cation of thermodynamic based indicators as tools to guide environmental managers in developing and
implementing policies in the neotropical savannah.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

Riparian vegetation is considered one of themain factors influencing
ecosystem structure and functioning in headwater streams (Clarke
et al., 2008; Rezende et al., 2008, 2016). It controls radiant energy avail-
ability to stream ecosystems, thus limiting local primary production,
while providing allochthonous detritus as an alternative energy source
(Carroll et al., 2016; Death and Collier, 2009; Vannote et al., 1980).

Tropical streams, due to higher radiant energy availability and typi-
cally higher temperatures, usually possess lower dependence to alloch-
thonous productionas compared to the temperate climate ones
(e.g., Boyero et al., 2016; Brito et al., 2006; Ferreira et al., 2014). Howev-
er, most studies regarding the effects of light availability (e.g., Aguiar
et al., 2015; Che Salmah et al., 2014; Masese et al., 2014) in tropical
streams have focused on the impacts of anthropogenic land use, such
as agriculture, pasture and deforestation, which are concomitant to
the occurrence of more open canopies. Nevertheless, what is the struc-
tural and functional response of tropical headwater streams' communi-
ties under the influence of naturally open canopiesis largely unknown.

To understandthe structure and functioning of biological communi-
ties in natural headwater streams is essential, as these ecosystems may
represent 80% of the channel length in a hydrographic basin, and are
critical sites for organic matter processing, nutrient cycling and biodi-
versity (Clarke et al., 2008; Dodds and Oakes, 2008). While many taxa
contribute to biodiversity in headwater streams, benthic macroinverte-
brates are among the most ubiquitous and diverse and are widely used
as bioindicators due to their ability to respond to changes in lotic envi-
ronments (Bonada et al., 2006; Klemm et al., 2003; Macedo et al.,
2016). Assessments of both structural characteristics and ecological
processes of benthic macroinvertebrate assemblages are important to
provide a better understanding on how the riparian vegetation can in-
fluence tropical headwater stream ecosystems' dynamics (Aguiar
et al., 2015; Boyero et al., 2016; Clarke et al., 2008).

The structure of benthic macroinvertebrate assemblages is generally
assessed trough taxonomic based indicators, such as richness and diver-
sity indices. Likewise, thermodynamic oriented indicators may provide
additional informationon ecosystems' self-organization capacity
(Silow and Mokry, 2010). These indicators are rooted in physical con-
cepts, providing an universal language to compare different organisms
and systems (Ludovisi et al., 2005). Among thermodynamic oriented in-
dicators, the exergy based have been widely and successfully used in
different types of ecosystems in the last decades (e.g., Linares et al.,
2017; Marques et al., 1997; Xu et al., 2001).

Exergy is a concept originated in physics, defined as the maximum
quantity of work that can be obtained in a process that brings a system
to thermodynamic equilibriumwith its environment (Silow andMokry,
2010). It represents the useful energy contained within a system and
was adapted to ecology under the form of two indicators: eco-exergy
and specific eco-exergy (Jørgensen, 2007a; Jørgensen and Fath, 2004;
Jørgensen andMejer, 1977). Eco-exergy is assumed to express the com-
plexity of an ecological system and provide information about its stabil-
ity (Li et al., 2016; Marques et al., 1997, 2003; Xu et al., 1999). Specific
eco-exergy is defined as the total eco-exergy divided by the total
biomass, which is assumed to take into account how well it uses the
available resources, independently from the amount of resources, mea-
suring the ability of the ecosystem to use external energy flows and
reflecting the degree of complexity and development of the system
(Molozzi et al., 2013; Patrício et al., 2009; Patrício and Marques, 2006;
Silow and Mokry, 2010).

Structural variable assessments, however, may not always properly
indicate changes in ecosystem functioning (Benke, 1993; Benke et al.,
2001). Differences in habitat are often reflected in important ecosystem
processes, such as organic matter composition, ecosystem metabolism
and secondary production (Rezende et al., 2016). Secondary production
is the rate of formation of heterotrophic biomass in a population or com-
munity, representing an estimative of the energy flows through these
systems (Dolbeth et al., 2012; Frauendorf et al., 2013). Assessments of
secondary production can provide important information about the en-
ergy flow through the ecosystem (Benke andWallace, 2015). As it com-
bines compositional information with process information, secondary
production is a measure of the overall evolutive success of a biological
assemblage (Aguiar et al., 2015). It also indicates changes in ecosystem
carbon and energy fluxes and nutrient cycling (Benke, 2010; Brabender
et al., 2016; Woodcock and Huryn, 2007). However, secondary produc-
tion is difficult to estimate for natural assemblages, as it requires data
about population growth and mortality, which means an intense effort
of field sampling (Dolbeth et al., 2012). For these reasons empirical
models were developed in order to facilitate the estimation of second-
ary production, among them Instant Secondary Production (Edgar,
1990; Morin and Dumont, 1994; Plante and Downing, 1989).

Our objective was to assess how riparian shading influences benthic
macroinvertebrate assemblages' structure and functioning in Neotropi-
cal savannah headwater streams. For that we tested four hypotheses:
(1) Open canopy will determine the occurrence of higher diversity in
benthic macroinvertebrate assemblages, which will be expressed by
higher values of diversity indices; (2) Streams with open canopy will
exhibitmore complex (in terms of the information embedded in the or-
ganisms biomass) benthic macroinvertebrate communities, which will
be expressed by higher eco-exergy and specific eco-exergy values;
(3) In streams with open canopy benthic macroinvertebrate assem-
blages will be more efficient in using the available resources to build
structure, which will be reflected by higher eco-exergy values; (4) Ben-
thic assemblages in streams with open canopy will exhibit more sec-
ondary productivity, which will be expressed by higher instant
secondary production values. Regarding exergy based ecological indica-
tors, it was intended to assess their performance in capturing natural
ecologic conditions for environmental quality assessments in Neotropi-
cal streams.

2. Material and methods

2.1. Study area

Samples were taken in streams located along the Araguari river
basin, located in the Neotropical savannah (Cerrado) in the Minas
Gerais state, southeastern Brazil. The Araguari River Basin has an area
of 21,856 km2, most of the regional geology is composed of shales and
quartzites, and the headwaters are located in the plateaus of the
Canastra Range, at an altitude of approximately 1440 m above sea
level (Rodrigues and Souza, 2013). In this area three distinct geological
regions are defined (Baptista et al., 2010): Phyllite region, dominated by
the phyllite metamorphic type of the Rio Verde geological formation;



Table 1
Study sites characterized by canopy cover (%).

Stream Mean canopy cover (±SD) Category

Parida 3.21(±7.60) Open
Fundo I 6.55(±14.50) Open
Fundo II 8.42(±10.44) Open
Boa Vista II 0(±0) Open
Jota 50.80(±44.95) Shaded
Ramalhete 37.30(±37.12) Shaded
Boa Vista I 39.57(±38.64) Shaded
Dona Ana 46.66(±45.44) Shaded
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Shale region, dominated by micaschists, amphibolite, quartzite, gneiss,
and banded iron formations; and the Canastra Group region, composed
mostly of quartzites, as well as some phyllites and shales.

The streamswere selected among potential sites based on the inter-
pretation of a combination of fine resolution images (0.6–5 m spatial
resolution; Google Earth images) with Landsat Thematic Mapper
multispectral satellite images (Macedo et al., 2014), resulting in a
total of 60 potential sites. Among these locations, eight streams
were selected (Table 1) after reconnaissance verification of the
following criteria: a) minimal anthropogenic disturbance at catchment
scale; b) absence of direct influence of anthropogenic alterations at
the sampling sites and c) presence of native riparian vegetation at the
sampling sites. The eight selected sites were all located in the Canastra
Group region (Fig. 1) to minimize the natural variability among then.
Based on the canopy cover data, four streams were classified as open
canopy and four classified as shaded (Table 1). In this methodology
the percentage of canopy cover of each stream was estimated by six
measurements using a densiometer (following Kaufmann et al., 1999
and Martins et al., 2017), two in each margin and two in the middle of
Fig. 1. Location of sampling sites
the stream, which explains the high standard deviations found
(Table 1).
2.2. Benthic macroinvertebrate sampling

Themacroinvertebrate communitieswere sampled in April andMay
of 2015, during the dry season. In each stream a 25m stretchwas divid-
ed into six equidistant transects. In each transect a kick-net sampler
(30 cm opening, 500 μm sieve) was used, resulting in six sub-samples
in each stream for a total area of 0.54m2 sampled. Organisms from
each sub-sample were stored in plastic bags, fixed in 10% formalin,
and then washed in a sieve (0.5 mmmesh) in laboratory.

Macroinvertebrates were identified under a stereomicroscope,
using specialized literature (Hamada et al., 2014; Merritt and
Cummins, 1996; Mugnai et al., 2010). The individuals of the insect
orders Ephemeroptera, Plecoptera and Trichoptera (EPT) were iden-
tified to genus level. Other taxa were identified to family (other
Insecta) or subclass (Anellida). The specimens were fixed in 70%
alcohol and deposited in the Reference Collection of Benthic
Macroinvertebrates, Instituto de Ciências Biológicas, Universidade
Federal de Minas Gerais.
2.3. Diversity measures calculation

To test whether benthic macroinvertebrate assemblages present
higher diversity in open canopy streams, the total number of taxa and
the number of EPT genera were counted for each stream. Additionally,
the Shannon-Wienner (Shannon, 1948) and the Simpson (Simpson,
1949) diversity indices were calculated for each stream.
in the Araguari river basin.



Table 2
Mean (±SE) and GLM results of Number of Taxa, Number of EPT Taxa, Simpson diversity
index and Shannon-Wienner diversity index for streams with Open and Shaded canopy.

Mean (±SE) GLM

Shaded Open F p

Number of Taxa 22.5(±2.60) 29.0(±4.26) 1.6957 0.2406
Number of EPT Taxa 10.75(±2.95) 17.25(±2.01) 3.3029 0.119
Shannon-Wienner Index 1.590(±0.19) 1.558(±0.27) 0.0091 0.9273
Simpson Index 0.634 (±0.07) 0.631(±0.09) 0.00004 0.9845
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Shannon-Wienner diversity index was computed as follows:

H0 ¼ −
XR

i¼1

pi lnpi

where pi is the proportion of the total of individuals belonging to the
taxon i.

Simpson diversity index was computed as follows:

λ ¼
XR

i¼1

pi2

where pi is the proportion of the total of individuals belonging to the
taxon i.

2.4. Biomass estimation

Dry-mass biomass wasestimated for each sampling site. Biomass
was estimated using length-mass equations (Benke et al., 1999;
Johnston and Cunjak, 1999; Miserendino, 2001; Smock, 1980; Stoffels
et al., 2003). Each individual of each taxon, up to 100, were
photographed in a stereomicroscope (model Leica M80) equipped
with a digital camera (model Leica IC 80 HD). Each photographed spec-
imen's length was measured using the software Motic Image Plus 2.0.
Using the length-mass equations (Supplementary Material 1) the dry-
mass biomass (g/m2) of each sampled taxon was estimated.

2.5. Calculation of exergy based indicators

To test if open canopy streams exhibitmore complex benthicmacro-
invertebrate communities and more efficient in using the available re-
sources to build structure, eco-exergy and specific eco-exergy values
were calculated for each stream. Eco-exergy was computed as follows
(Jørgensen et al., 2010):

EX ¼
Xi¼0

i

βici

whereβi is aweighting factor based on the information contained in the
components i of the ecosystem, defined by Jørgensen et al. (2005) and ci
is the concentration (biomass) of component i in the ecosystem.

Specific eco-exergy is given by:

SpEX ¼ EX
BM

where EX is the total eco-exergy and BM is the total biomass.

2.6. Calculation of instant secondary production

To test if benthic assemblages in open canopy streams support
higher secondary production, Instant Secondary Production (mg/m2/
day) was calculated for each stream.

Instant Secondary Production (Morin, 1997) was calculated as fol-
lows:

IP ¼
X

D�W�GR

where D is the density of each taxon, W is the mean individual dry
weight for each taxon and GR is the Instantaneous Growth Rate, esti-
mated based on individual equations for each taxon found in the litera-
ture (Edgar, 1990; Morin and Dumont, 1994; Plante and Downing,
1989).
2.7. Data analysis

A Generalized Linear Model (GLM) with a Gaussian error structure
was used to test if the total number of taxa and the number of EPT
at each site, as well as the values of the Shannon-Wienner and
Simpson diversity indices (hypothesis 1), eco-exergy and specific
eco-exergy (hypotheses 2 and 3), and instant secondary production
(hypothesis 4) were significantly different between open and shaded
canopies. The model's significance was tested by an Analysis of Devi-
ance (F test) (Kaur et al., 1996).

To verify if the canopy cover changes the taxonomic composition of
associated benthic communities, data on abundance underwent a
square root transformation, and then we used the Bray-Curtis distance
to buildthe similarity matrix (Bray and Curtis, 1957). PERMANOVA
(1000 permutations) was used to test if the benthic macroinvertebrate
communities were significantly different under open canopy and
shaded canopies.

All calculations were performed using R software, version 3.2.3
(R Core Team, 2015) and the vegan package (Oksanen et al., 2016).

3. Results

A total of 13,633 benthic macroinvertebrate specimens belonging to
72 taxa were sampled, of which 11,448 in open canopy streams and
2185 in shaded streams. The total number of taxa, the number of EPT
taxa, as well as the values of the Shannon-Wienner and Simpson diver-
sity indices were not significantly different between streams with open
canopy and the shaded ones (Table 2). Nevertheless, results of
PERMANOVA illustrated that the taxonomic composition was signifi-
cantly different in the two situations (F1.7 = 3.8826, p = 0.02398),
since although Chironomidae was the dominant taxon in both cases,
its relative abundance was significantly higher (53.09%) in shaded
streams, while under open canopies Simuliidae did also show high rel-
ative abundance (31.87%) (Fig. 2).

Eco-exergy was significantly higher in open canopy streams (GLM;
F1.7 = 20.349, p = 0.004056), but specific eco-exergy values were not
significantly difference in the two situations (GLM; F1.7 = 5.9423, p =
0.5063) (Fig. 3). Finally, instant secondary production was also signifi-
cantly higher in streams with open canopy (GLM; F1.7 = 9.8751, p =
0.02001) (Fig. 4).

4. Discussion

Our results illustrate that we could not sanction our first hypothesis,
that open canopy streams would have higher diversity, since all the di-
versity measures tested failed in showing significant differences be-
tween open canopy and shaded streams. On the other hand, the
second hypothesis, that streams with open canopy would have more
complex macroinvertebrate assemblages, was only partially confirmed,
since eco-exergy values were significantly higher in open canopy sites,
but specific eco-exergy did not show significant differences. The third
hypothesis, that macroinvertebrate assemblages would be more effi-
cient in using the available resources to build structure in open canopy
streams, was confirmed, since eco-exergy values were significantly
higher in open canopy sites. Finally, the fourth hypothesis, that the



Fig. 2. Relative abundance of benthic macroinvertebrate assemblages for streams with Open and Shaded canopy.
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secondary productivity of open macroinvertebrate assemblages would
be higher in open canopy streams,was confirmed since the values of in-
stant secondary production estimatedwere higher in open canopy sites.

The absence of significant differences regarding diversity measures
between open and shaded streams can eventually be understood
based on the fact that the sites selected were non-disturbed. In fact, al-
though many studies in tropical streams reported higher benthic mac-
roinvertebrate diversity in open canopy streams (e.g., Che Salmah
et al., 2014; Masese et al., 2014; Md Rawi et al., 2013), which has driven
to the establishment of our working hypothesis. Several other studies
claim that in non-disturbed headwater streams the macroinvertebrate
assemblages tend to exhibit similar biodiversity patterns, independent-
ly from the shading effects of the canopy (Ceneviva-Bastos and Casatti,
2014; Datry et al., 2016; Tonkin et al., 2013). The fact is that studies
Fig. 3. Mean and standard error of Eco-exergy and Specific Eco-exergy for streams
that reported higher diversity in open canopy streams were in general
carried out in streams where the canopy riparian vegetation was al-
ready anthropogenically altered, such as pastures and agriculture
crops (Death and Zimmermann, 2005; Johnson et al., 2013;
Zimmermann and Death, 2002), which explain differences in assem-
blages' diversity.

Higher eco-exergy values found in open canopy streams can be ex-
plained by the higher amount of radiant energy input available
(Marchi et al., 2011; Rezende et al., 2008), resulting in an increased
use of the available resources to build amore complex dissipative struc-
ture (Jørgensen, 2007a, 2007b; Jørgensen et al., 2007), corresponding to
growth in the network and information (growth forms II and III – see
Jørgensen et al., 2016), butmost probably principally to biomass storage
(growth form I – see Jørgensen et al., 2016). A similar response may, for
with Open and Shaded canopy. “a” and “b”mark significantly different plots.



Fig. 4. Mean and standard error of Instant Secondary Production (g/m2/day) for streams with Open and Shaded canopy. “a” and “b”mark significantly different plots.
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instance, take place in systems where a non-excessive nutrient input
enrichment occurs, resulting inmore energy available to benthic assem-
blages and a consequent increase in eco-exergy (Marques et al., 1997;
Molozzi et al., 2013). Regarding specific eco-exergy, which is assumed
to express the overall degree of complexity and development of a bio-
logical system (Jørgensen, 2007a, 2007b; Jørgensen and Fath, 2004),
the fact that values did not show significant differences in open canopy
and shaded streams may be interpreted as indicating that macroinver-
tebrate assemblages are similarly fitted in both environments.

Higher instant secondary production in open canopy streams is
straight interpretable as a result of higher instream energy availability
of energy, in compliance with the higher eco-exergy values also ob-
served, exemplifying that these streams may, to a certain extent, as hy-
pothesized, support more complex and productive benthic
macroinvertebrate assemblages. Additionally, this may also imply the
conclusion that both in open canopy and shaded streams benthic mac-
roinvertebrate assemblages mainly depend on autochthonous re-
sources, eventually more available in open canopy streams (Fuß et al.,
2017; Guo et al., 2016; Rezende et al., 2008). These results are in concor-
dance with the Riverine Productive Model Theory (Thorp and Delong,
1994), which assumes that autochthonous production is the most im-
portant source of energy to lotic ecosystems, especially in the tropics.
This also maintained in other studies (e.g., Carroll et al., 2016; Ferreira
et al., 2014; Ivković et al., 2015), which argue that autochthonous
organic matter is more easily absorbed by benthic macroinvertebrates
(Pearson et al., 2015).

5. Conclusions

The present study illustrates the importance of canopy cover in
the structure and functioning of benthic macroinvertebrate assem-
blages, as our results imply that streams with open canopy show
benthic assemblages with more complex dissipative structure and
higher secondary production. Additionally, our results illustrate how
autochthonous production play a crucial role in tropical headwater
streams, and so we suggest that future studies should focus in the rela-
tive importance of the various food sources available to benthic macro-
invertebrate assemblages in Neotropical headwater streams. Stable
isotope analysis is a very promising methodology to this end, being al-
ready successfully used in the Neotropical savannah with benthic mac-
roinvertebrates (Castro et al., 2016) and fishes (Carvalho et al., 2015,
2017). Canopy cover, however, did not show any correlation to the ben-
thic macroinvertebrate assemblages' diversity and specific eco-exergy,
eventually implying that these aspects might be controlled and
explained by other factors, such as the level of disturbance (see for
instance Ferreira et al., 2014; Junqueira et al., 2016; Ligeiro et al.,
2013), namely at the light of the intermediate disturbance hypothesis
(Connell, 1978).

Our results highlight the need of understanding the ecological struc-
ture and dynamics of headwater streams in the Neotropical savannah,
which constitute global diversity hotspots (Fernandes et al., 2012).
These ecosystems are highly threatened by human land use and climate
change (Callisto et al., 2012), and a sound base information on their nat-
ural functioning and variations is indispensable. The dependence of head-
streams macroinvertebrate communities on autochthonous food sources
impliedbyour results is specially relevant, as autotrophic lotic ecosystems
are less stable and thus more susceptible to disturbances (Benke, 2010;
Death and Zimmermann, 2005; Tonkin et al., 2013). Eco-exergy and spe-
cific eco-exergy, as holistic ecosystemhealth indicators based on auniver-
sal thermodynamic language, stand out as useful biomonitoring tools,
potentially helpful as indicators to support environmental decisions
with regard to protection and restoration measures.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.scitotenv.2017.08.282.
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