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Abstract: An understanding of the interactions among local environmental factors (e.g., physical habitat and wa-
ter quality) and aquatic assemblages is essential to conserve biodiversity in tropical and subtropical headwater
streams. We evaluated the relative importance of multiple physical and chemical habitat variables that influence
the richness of Ephemeroptera, Plecoptera, and Trichoptera (EPT) assemblages in wadeable Brazilian Cerrado (sa-
vanna) streams. We sampled macroinvertebrate assemblages and quantified physical and chemical habitat in 79
randomly selected sites in 2 Cerrado basins in southeastern Brazil. The environmental variables selected by mul-
tiple regression models (MLRs) via corrected Akaike Information Criteria (AICc) contributed significantly to vari-
ation in EPT taxon richness. The variance explained by physical-habitat variables was slightly greater in the Upper
São Francisco Basin (adjusted R2 = 0.53) than in the Upper Araguari Basin (adjusted R2 = 0.46), and both were
greater than the variance explained by a combined basin model (adjusted R2 = 0.39). Physical-habitat variables
were more important than water-quality variables in structuring EPT genera in streams with catchments domi-
nated by agriculture or pasture land uses. Regional models can be improved by incorporating basin-specific in-
formation to refine biological assessments and to provide better understanding of the interactions that maintain
biodiversity in stream networks.
Key words: EPT assemblages, physical habitat, hydromorphology, stream conservation, macroinvertebrate
bioindicators, Cerrado headwater streams

Agriculture, pasture, and riparian deforestation hinder
stream conservation through their effects on in-stream
habitat conditions (Dovciak and Perry 2002, Pinto et al.
2006, Egler et al. 2012). Physical-habitat structure and wa-
ter quality have received attention recently as important
elements of environmental quality and as agents structur-
ing aquatic biotic assemblages (Karr and Dudley 1981,
Sály et al. 2011, Ligeiro et al. 2013). Assessing and under-
standing the interactions among physical habitat features,
water chemistry, and aquatic assemblages are essential to
the conservation of headwater streams (Maddock 1999,

Nerbonne and Vondracek 2001, Pinto et al. 2009). At the
site scale, physical-habitat complexity (e.g., structural cover,
substrates, and water flow) influences assemblage compo-
sition, richness, and temporal stability and ecological pro-
cesses (Hughes et al. 2010, Kaufmann and Faustini 2012,
Kovalenko et al. 2012).

Benthic macroinvertebrates often are used for biological
assessments of environmental change in streams (Barbour
et al. 1996, Lammert and Allan 1999, Bonada et al. 2006)
because they show a continuum of responses to environ-
mental variables (Rosenberg and Resh 1993, Maddock
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1999, Dohet et al. 2008). These organisms are used often to
assess water-body condition in spatially extensive biomoni-
toring programs (Hering et al. 2006, Paulsen et al. 2008,
USEPA 2013) via the use of multimetric indices (Klemm
et al. 2003, Baptista et al. 2007, Stoddard et al. 2008,
Ferreira et al. 2011, Mugnai et al. 2011, Oliveira et al. 2011)
and predictive models (Feio et al. 2009, Moya et al. 2011,
Chen et al. 2014).

Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa
are sensitive indicators of high-quality ecological condi-
tions because of their low tolerance to stressors (Usseglio-
Polatera et al. 2000, Callisto et al. 2001, Klemm et al. 2003,
Ferreira et al. 2011). The EPT also are important in nu-
trient cycling (Righi-Cavallaro et al. 2010), processing of
coarse organic matter (Graça et al. 2001, Boyero et al.
2011), and diets of vertebrates and invertebrates (Ferro
and Sites 2007). Altered environmental conditions can ad-
versely affect EPT taxon richness and composition. For ex-
ample, removal of riparian vegetation may increase erosion,
turbidity, water temperature, streambed sedimentation, and
habitat loss (Chapman and Chapman 2002, Kaufmann et al.
2009). Increased fine sediments are detrimental to many
EPT taxa (Bryce et al. 2010), and decreased wood and leaves
reduce food and shelter for EPT assemblages (Melody and
Richardson 2007).

The Cerrado biome (Brazilian tropical savanna) covers
>2 million km2, mostly inside Brazil, and is a priority hot-
spot for biodiversity conservation on a global scale because
it supports many endemic species (Myers et al. 2000). In
the past 60 y, >½ of the Cerrado has been deforested
(Klink and Machado 2005, Wantzen et al. 2006), and large
natural areas have been transformed into livestock pasture
and croplands (Diniz-Filho et al. 2009). Replacement of na-
tive vegetation by pasture and intensive agriculture is as-
sociated with degradation of water quality, increased soil
erosion, siltation of water bodies, and degradation of phys-
ical habitat (Dovciak and Perry 2002, Wantzen et al. 2006).
Our objective was to evaluate the importance of site-scale
physical-habitat and water-quality variables for EPT ge-
neric richness in Brazilian Cerrado streams. The goal is
to use this information to manage headwater streams and
their catchments. Adjacent basins in the same biome can
differ in land use, ecological condition, geomorphology,
and precipitation, so we hypothesized that 1) the 2 basins
would differ in EPT assemblage structure and composi-
tion, 2) different sets of habitat metrics would explain EPT
richness in each basin, and 3) a combined model would
explain less variability than individual models.

METHODS
Study area

We studied seventy-nine 1st- to 3rd-order (at 1 ∶ 100,000
scale) wadeable stream sites in the Upper São Francisco
and Upper Araguari River Basins, Minas Gerais, south-

eastern Brazil (Fig. 1). Both basins are in the Cerrado
biome at altitudes between 520 and 1300 m asl. The re-
gion experiences a distinct dry season from May to Sep-
tember (rainfall 10–55 mm/mo) and a distinct rainy season
from October to April (rainfall 100–300 mm/mo). The
total mean annual rainfall is ∼1600 mm (Brasil 1992). In
the Upper Araguari Basin, lithology is mostly metamor-
phic rock and land use is primarily agricultural (soy, coffee,
corn, and sugar cane). In the Upper São Francisco Basin, the
predominant lithology is sedimentary rocks and the land
use is mostly pasture and small family farms (Ligeiro et al.
2013).

Site selection
We selected sites as described by Stevens and Olsen

(2004) for the USA Wadeable Stream Assessment (Olsen
and Peck 2008, USEPA 2013). Briefly, we drew randomly
selected sites from a digital hydrographic map to produce
a spatially balanced network of sites with a minimum dis-
tance of 1 km between sites. We sampled 40 sites in Sep-
tember 2009 in the Upper Araguari Basin and 39 sites in
September 2010 in the Upper São Francisco Basin.

Physical habitat
At each site, we sampled a longitudinal distance equal

to 40× the mean width, with a minimum distance of 150 m.
We established 11 equidistant transects perpendicular to
the longitudinal axis of the streams and defined 10 sec-
tions of the same length. In each transect and along the
sections, we measured stream physical-habitat variables as
described by Peck et al. (2006). At the 11 transects, we
recorded channel dimensions (e.g., wetted and bankfull
width and depth), bank angle, riparian vegetation (e.g., %
cover of tree, understory, ground layer), presence and prox-
imity of human disturbances (e.g., buildings, trash, land
use), and presence of fish cover (e.g., undercut banks, trees
and fallen branches, filamentous algae, aquatic macro-
phytes). We determined bed substrate (e.g., sand, gravel,
boulder) at 100 points. In addition, we measured flow type
(e.g., pools, riffles), thalweg depths, sinuosity, and channel
slope between transects. We generated quantitative physi-
cal habitat metrics as described in Kaufmann et al. (1999),
but calculated log10(relative bed stability) as in Kaufmann
et al. (2009).

Water quality
We measured temperature, electrical conductivity, pH,

turbidity, and total dissolved solids (TDS) in situ between
0900 and 1000 h using a multiparameter probe (650 MDS
probe 6920; Yellow Springs Instruments, Yellow Springs,
Ohio). In the laboratory, we measured the concentrations
of total P (TP), total N (TN), and dissolved O2 (DO) (APHA
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2005) from a water sample taken from each site and re-
tained in a chilled cooler.

Benthic macroinvertebrates
We collected benthic macroinvertebrates with a D-frame

kick net (30-cm aperture, 500-μmmesh).We sampled 1 unit
(0.09 m2) per transect, totaling 1 m2 of sampled area per
site. The sampling followed a systematic zig-zag pattern
(right, center, left) along the site. We preserved the com-
posite samples with 4% formalin solution. In the Univer-
sidade Federal de Minas Gerais (UFMG) Benthic Ecology
Laboratory, we washed the samples through a 500-μm
sieve and sorted the organisms. We identified EPT indi-
viduals to genus with the aid of a stereomicroscope (80×)
and taxonomic keys (Merritt and Cummins 1996, Wiggins
1996, Hamada and Couceiro 2003, Salles et al. 2004, Pés
et al. 2005, Mugnai et al. 2010, Falcão et al. 2011).

Data analyses
To identify the most important metrics, we followed

the procedures suggested by Marzin et al. (2012) and
first separated 158 habitat metrics into 6 groups of met-
rics that described key stream-habitat characteristics (chan-
nel morphology, bed substrate, flow type, riparian vegeta-

tion, fish cover, and water quality). Within each group, we
examined correlation matrices (Pearson product moment)
to eliminate redundant metrics (≥|0.8| correlation) and re-
tained the most ecologically meaningful ones. For instance,
proportion of pools was highly correlated with propor-
tion of trench pools (r = 0.94), so we chose proportion of
pools because we consider it a more comprehensive met-
ric describing slowly flowing habitat types. After this
screening step, we retained a total of 83 metrics (15 in the
channel-morphology group, 15 in the bed-substrate group,
6 in the flow-type group, 19 in the riparian-vegetation group,
23 in the fish-cover group, and 5 in the water-quality
group).

In a 2nd metric screening step, we selected the metrics
within each metric group that contributed most to the
dispersion of the data in the multivariate space of a princi-
pal components analysis (PCA) and retained 29 metrics
(Table 1). The 1st axis of each PCA (PCA1) represents the
clearest univariate gradient formed by the habitat metrics
in each group. The coordinate values of the metrics ex-
press the relative contribution of each metric to PCA1.
For instance, PCA1 for the channel-morphology metric
group in the Upper Araguari Basin represents a contrast
between channel slope and channel size (depth and width)
(Table 1).

Figure 1. Study area and site locations in the Upper Araguari (A) and Upper São Francisco (B) Basins
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To identify the best predictor variables for explaining
EPT generic richness, we ran a multiple linear regression
(MLR) for each basin and for all 79 studied sites com-
bined. The predictors were measured over a variety of nu-
merical scales, so we mean-centered and standardized them
before the analyses. We used the best-subsets procedure
(Harrell 2001) for creating MLR models and included a
maximum of 4 explanatory variables in the models for
each individual basin and 8 explanatory variables in the
model for the 2 basins combined to avoid model overfit-
ting (Gotelli and Ellison 2004). We used the corrected
Akaike Information Criteria (AICc) values to identify the
best models (Burnham and Anderson 2002). The AICc is
suitable for small data sets like ours. We also checked
whether the models could be simplified, i.e., if the number
of explanatory variables could be reduced in each case.
When the difference between the AICc values of 2 models
(ΔAICc) is ≤2, the reduced model can be considered equiva-
lent and preferable. We ran these analyses in Statistica for
Windows (version 7; StatSoft, Tulsa, Oklahoma).

For each basin, we also used the PCA1 coordinate val-
ues as surrogate variables representing each of the dimen-
sions of habitat quantified by the habitat groups (Table 1)
in a canonical correspondence analysis (CCA) to assess EPT
assemblage composition relative to the site environmental
conditions. We ran the CCAs using only EPT genera with
counts >10 individuals to avoid misinterpretation of the
results. We √(x)-transformed invertebrate abundances be-
cause of the wide range in abundances. The CCAs were
run in the vegan package (Oksanen et al. 2012) in R (ver-
sion 2.15.1; R Project for Statistical Computing, Vienna,
Austria).

We used metrical multidimensional scaling (MDS) or-
dination to evaluate dissimilarities in the taxonomic com-
position of benthic assemblages between the 2 basins. We
used the altered Gower distance based on relative abun-
dances, with log2(x + 1)-transformed data (Anderson et al.
2006) and Jaccard dissimilarity on presence/absence data.
We used Permutational Multivariate Analysis of Variance
(PERMANOVA; Anderson 2001) with 10,000 simulations
to test the observed difference. We also ran t-tests to detect
significant differences (p < 0.05) in EPT richness and den-
sity, habitat, and water-quality metrics between the 2 ba-
sins. We ran the t-tests, MDS, and PERMANOVAs in R.

RESULTS
Physical and chemical variables

In general, sites in both basins had good quality water,
with low values for TDS and N, and high values for DO.
The largest differences in water quality between the 2 ba-
sins were observed for electrical conductivity (t1,77 = –3.55,
p < 0.001), TDS (t1,77 = –4.63, p < 0.001), and water tem-
perature (t1,77 = 7.75, p < 0.001). Sites in the Upper São

Francisco Basin had higher mean electrical conductivity
(76.1 μS/cm) and TDS (41.1 mg/L), whereas Upper Ara-
guari sites had higher mean water temperature (20.3°C)
(Table 1).

Site physical habitat differed between basins. The Upper
Araguari sites had higher mean slopes and less slow-water
habitat, whereas the Upper São Francisco sites had greater
depths and larger cross-sectional widths. The highest mean
proportion of cover (coarse litter) and flow types (propor-
tion of glide, proportion of pools) occurred in the Upper
São Francisco Basin (Table 1).

EPT assemblages
In the Upper Araguari Basin, we collected 5463 individ-

uals distributed in 19 families and 61 genera, and in the
Upper São Francisco Basin, we collected 15,133 individ-
uals distributed in 20 families and 65 genera (Table 2).
Total richness of EPT genera did not differ between ba-
sins. The Upper São Francisco Basin had fewer sites with
EPT richness between 1 and 10 (15%) and more sites with
taxon richness between 20 and 30 (36%). The Upper Ara-
guari Basin had more sites (48%) with taxon richness be-
tween 10 and 20. Both basins had the same number of
sites (5%) with taxon richness between 30 and 37 (Fig. 2A).
Upper São Francisco sites supported higher EPT densities
than Upper Araguari sites (t1,7 = –3.54, p = 0.001; Fig. 2B).

Based on the AICc, the best model selected for the
Upper Araguari Basin had 3 predictor variables (adjusted
R2 = 0.46), and the best model for the Upper São Fran-
cisco Basin had 4 predictor variables (adjusted R2 = 0.53)
(Table 3). The best model selected for the combined ba-
sins had 4 predictor variables (adjusted R2 = 0.39). The best
models selected in both basins included stream bottom
substrate (areal proportion of cobble, log10[relative bed
stability]) and channel size (mean bankfull width, mean
width) variables. Percent brush cover was important in the
Upper Araguari Basin, and proportion of slow water and
DO were important in the Upper São Francisco Basin. The
combined model included size (mean bankfull width) and
substrate (% cobble) variables, together with mean slope
and SD of midchannel canopy density. We analyzed regres-
sion residuals to evaluate the validity of model assumptions.

The CCA axes accounted for little of the variability of
EPT assemblages in both basins. In the Upper Araguari
Basin, CCA axes explained only 21% (8 and 4% for axes
1 and 2, respectively; Fig. 3A) of the total variability. Ha-
genulopsis, Camelobaetidius, and Varipes abundances were
correlated with the channel-morphology PCA1. The abun-
dances of those organisms were higher in streams hav-
ing lower mean depths, widths, and bankfull widths, and
higher slopes and sinuosities. Cloeodes and Polyplectropus
abundances were associated with the riparian PCA1, and
Chimarra, Leptohyphes, and Phylloicus abundances were
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associated with the flow-type PCA1. Itaura and Leptonema
abundances were associated with bed-substrate and water-
quality PCA1. In the Upper São Francisco Basin, CCA
axes explained 24% of the total variability in EPT assem-
blages (10 and 4% for axes 1 and 2, respectively; Fig. 3B).
Cyrnellus, Campsurus, and Macronema abundances were
associated with channel-morphology and water-quality
PCA1s. These results indicated that those genera were as-
sociated with streams of smaller widths, depths, and slopes;
lower DO concentrations; and higher sinuosities and tur-
bidities. Triplectides and Asthenopus abundances were asso-
ciated with the bed-substrate PCA1. Hermanella, Camelo-
baetidius, and Leptohyphes were associated with flow-type
PCA1, and Helicopsyche and Massartella were associated
with shelter PCA1. Considerable overlap in genera occurred
between basins (Table 2), but we found no common cor-
relations among abundances of individual genera and physi-
cal or chemical habitat predictors.

The MDS based on Jaccard’s index indicated dissimilarity
in the composition of EPT genera between basins (Fig. 4A).
This separation was confirmed by the PERMANOVA test
(F1,77 = 9.91, p < 0.001). The MDS based on modified

Gower distance (Fig. 4B) indicated greater overlap between
basins. The difference between basins was confirmed by the
PERMANOVA (F1,77 = 7.99, p < 0.001).

DISCUSSION
Despite significantly greater EPT densities and fewer

genus-depauperate sites in the Upper São Francisco Basin
(Fig. 2A, B), the basins had similar total EPT generic rich-
ness. However, some genera differed between basins (Ta-
ble 2), and the dissimilarity indices revealed differences
between basins in the structure and composition of their
EPT assemblages (Fig. 4A, B). The differences were con-
firmed in the MDS plots and PERMANOVA tests. Thus,
we found support for hypothesis 1 (EPT assemblage struc-
ture and composition differ between basins).

In both basins individually and in the combined model,
channel size, streambed substrate, and slope/flow metrics
were significant predictors of EPT generic richness, as
found by Klemm et al. (2003). However, the specific met-
rics explaining taxon richness in each of those categories
differed slightly between basins: log10(relative bed stability)
vs areal proportion of cobble, and mean width vs mean
bankfull width for the Upper São Francisco Basin vs the
Upper Araguari Basin, respectively. In addition, DO was an
important predictor in the Upper São Francisco Basin and
% brush cover was an important predictor in the Upper
Araguari Basin. The explanatory variables were similar,
but they differed enough that we accepted our 2nd hypoth-
esis that different basins would yield different predictors
of EPT generic richness. The combined model selected
by the AICc, containing 4 predictor variables explained
a little less of the EPT generic richness than the models
of the individual basins according to the adjusted R2 values,
a result that supported our 3rd hypothesis. This result sug-
gests that general regional models could be improved some-
what by incorporating basin-specific information and is
in agreement with Stoddard et al. (2008) and USEPA (2013)
who reached similar conclusions for national vs ecoregional
models.

The importance of the many naturally varying metrics
in our models supports the use of such variables or their
surrogates in predictive models used for bioassessment.
Failure to include natural variables at minimally disturbed
sites when developing model expectations for macroinver-
tebrate assemblage condition in disturbed or test sites will
lead to confounded or inaccurate biological assessments.
Therefore, the effects of natural variability on various bio-
logical metrics are incorporated in predictive multimetric
models to assess the effects of anthropogenic disturbances
on assemblages (e.g., Pont et al. 2009, Moya et al. 2011,
Marzin et al. 2012, 2013, Chen et al. 2014). Future studies
should include these approaches and should combine field
data with laboratory experiments (Woodward et al. 2012)
and predictive modeling.

Figure 2. Distribution of Ephemeroptera, Plecoptera, and
Trichoptera taxon richness (A) and densities of total individuals
(ind/m2) (B) at sites in the Upper Araguari Basin and Upper São
Francisco Basin.
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Our MLRs explained nearly ½ the variation in EPT
generic richness. Marzin et al. (2013) used partial con-
strained redundancy analyses and found that reach-scale
environmental variables explained only 11% of the variabil-
ity in macroinvertebrate taxonomic composition of 301
French stream sites. These results may indicate the value
of obtaining multiple quantitative physical-habitat mea-
surements vs the qualitative observations commonly used
in stream surveys (Barbour et al. 1999, Marzin et al. 2012a,
b). Streams with minimally disturbed riparian forest con-
tribute branches and large wood to channels, thereby in-
creasing habitat complexity and habitats that favor in-
creased abundance of macroinvertebrates (Kaufmann and
Faustini 2012). Ligeiro et al. (2013) reported that the Up-
per São Francisco Basin experienced lower levels of agri-
culture and general anthropogenic disturbance than the
Upper Araguari Basin. The small towns and agriculture in
the Upper Araguari Basin may be affecting EPT taxa via
increased erosion, stream sedimentation, and the resulting
degradation of physical habitats and water quality. This,
combined with physicochemical variables (e.g., electrical
conductivity, TDS) and flow types (Table 1), may have
affected site-level EPT richness and abundance.

Streambed sediment size is a major factor governingmac-
roinvertebrate richness and abundance. Bryce et al. (2010)
described the importance of sediment size for structur-
ing benthic macroinvertebrate assemblages and recom-
mended levels of fine sediments that would protect
sediment-sensitive macroinvertebrate and fish taxa in
mountain streams of the western USA. Duan et al. (2008)
reported a positive relationship between benthic macroin-
vertebrates, pebbles, and cobbles, which are more stable
substrates than sand and fine sediments.

Water quality and the relative occurrence of habitat
types also affect macroinvertebrate assemblage composi-
tion. For example, Hydroptila (Trichoptera:Hydroptilidae)
are found more frequently in slowly flowing waters and
pools than in faster moving water (Dolédec et al. 2007).
The distribution and composition of benthic assemblages
also are affected by dissolved O2 (DO) (Baptista et al. 2007,
Ferreira et al. 2011) and conductivity (Kennedy et al. 2004,
Pond 2010).

Our site-scale physical-habitat variables explained lit-
tle of the distribution and abundance variability of EPT
genera composition via CCAs. On the other hand, MLR
models were better able to explain relationships between

Table 3. Best subsets multiple linear regression (MLR) models of environmental variables explaining Ephemeroptera, Plecoptera,
Trichoptera richness. AICc = Akaike’s Information Criterion for small sample sizes, ΔAICc = difference in AICc between the full
and reduced models, adj = adjusted. See Table 1 for full names of metrics.

Sites Model Metrics β β (SE) AICc ΔAICc

Upper Araguari Basin 4 variables xbkf_w 0.40 0.13 271.65 1.16

R2 adj. = 0.51; F4.38 = 11.19; p < 0.001 p_cb 0.43 0.12

pct_xfc_brs 0.29 0.12

xslope –0.28 0.13

3 variables xbkf_w 0.51 0.12 272.81

R2 adj. = 0.46; F4.38 = 12.19; p < 0.001 p_cb 0.32 0.12

pct_xfc_brs 0.23 0.19

Upper São Francisco Basin 4 variables p_slow –0.64 0.14 256.04 –

R2 adj. = 0.53; F4.39 = 13.15; p < 0.001 lrbs 0.33 0.11

xwidth 0.34 0.13

DO –0.36 0.14

Combined basins 8 variables xbkf_w 0.44 0.10 530.932 0.005

R2 adj. = 0.44; F8.79 = 8.69; p < 0.001 vcdenmid −0.16 0.10

p_cb 0.21 0.10

xslope −0.22 0.10

xembed −0.17 0.10

p_pool 188.87 71.34

p_gl 168.18 63.50

p_slow −180.64 68.20

4 variables xbkf_w 0.53 0.10 530.927

R2 adj. = 0.39; F8.79 = 13.96; p < 0.001 xslope −0.19 0.10

p_cb 0.26 0.10

vcdenmid −0.20 0.10
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taxonomic richness and habitat variables. We stress that
MLR models are developed to analyze the variability of a
single response variable (in our case, taxonomic richness),
whereas CCA analyzes the variability in the composition
of the whole assemblage. Explaining the variability of a
single response variable is easier than explaining the vari-
ability of multiple species simultaneously, one reason for
the differing performances of MLR models vs CCA. Re-
gardless of which analysis explains the greater amount of
variability, both offer important and complementary in-
sights that help us understand assemblage structure.

In summary, we showed the importance of site-scale
physical-habitat factors for understanding differences in
EPT assemblage richness in headwater Cerrado streams. Be-
cause we used a randomized and spatially balanced survey
design, we can confidently assume that the ecological data
were representative of the region (Stevens and Olsen 2004).

We think the information in our study may be useful for
suggesting improved ecological assessment programs, wa-
tershed management practices, aquatic ecosystem rehabil-
itation measures, and protection strategies for aquatic bi-
ota of the Brazilian Cerrado, especially those that limit the
amount of sand and fine sediments entering streams.
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