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a  b  s  t  r  a  c  t

Most  studies  dealing  with  the  use  of  ecological  indicators  and  other  applied  ecological  research  rely  on
some definition  or concept  of what constitutes  least-,  intermediate-  and  most-disturbed  condition.  Cur-
rently, most  rigorous  methodologies  designed  to define  those  conditions  are  suited  to  large  spatial  extents
(nations,  ecoregions)  and  many  sites  (hundreds  to  thousands).  The  objective  of  this  study  was  to describe
a methodology  to quantitatively  define  a  disturbance  gradient  for  40 sites  in each  of two  small  south-
eastern  Brazil  river  basins.  The  assessment  of  anthropogenic  disturbance  experienced  by  each  site  was
based solely  on measurements  strictly  related  to the  intensity  and  extent  of  anthropogenic  pressures.  We
calculated  two  indices:  one  concerned  site-scale  pressures  and the  other  catchment-scale  pressures.  We
combined  those  two indices  into  a single  integrated  disturbance  index  (IDI)  because  disturbances  oper-
ating  at both  scales  affect  stream  biota.  The  local-  and  catchment-scale  disturbance  indices  were  weakly
correlated  in  the  two  basins  (r  = 0.21  and  0.35)  and  both  significantly  (p  <  0.05)  reduced  site  EPT (insect
orders  Ephemeroptera,  Plecoptera,  Trichoptera)  richness.  The  IDI  also  performed  well  in  explaining  EPT
richness in  the  basin  that  presented  the  stronger  disturbance  gradient  (R2 =  0.39,  p  < 0.001).  Natural  habi-
tat  variability  was  assessed  as  a  second  source  of  variation  in  EPT  richness.  Stream  size  and  microhabitats
were  the  key  habitat  characteristics  not  related  to disturbances  that  enhanced  the  explanation  of  EPT
richness  over  that  attributed  to the IDI. In both  basins  the  IDI plus  habitat  metrics  together  explained
around  50%  of  EPT  richness  variation.  In  the  basin  with  the weaker  disturbance  gradient,  natural  habitat
explained  more  variation  in EPT  richness  than  did  the  IDI,  a result  that  has  implications  for  biomonitoring
studies.  We  conclude  that quantitatively  defined  disturbance  gradients  offer  a  reliable  and  comprehensive
characterization  of anthropogenic  pressure  that  integrates  data  from  different  spatial  scales.

©  2012  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

The development and maintenance of human societies rely on
the conservation of freshwater resources and of the ecological

Abbreviations: LDI, local disturbance index; CDI, catchment disturbance index;
IDI,  integrated disturbance index.
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services that streams and rivers provide (Karr, 1999). Monitor-
ing the “ecosystem health” of streams (sensu Norris and Thoms,
1999) is a fundamental step for conscious and effective manage-
ment of catchments (Boulton, 1999). Currently, biomonitoring is
considered one of the most efficient ways to assess stream con-
dition (Marchant et al., 2006). Macroinvertebrate assemblages are
responsive to environmental condition and thus integrate phys-
ical, chemical and biological aspects of ecosystems. Accordingly,
they are considered good biological indicators of stream ecolog-
ical condition (Karr and Chu, 1999; Bonada et al., 2006; Hughes
and Peck, 2008) and are extensively used in multimetric indices
(MMIs) for such purposes (Reynoldson et al., 1997; Barbour et al.,
1999; Klemm et al., 2003; Hering et al., 2006; Whittier et al., 2007a).
The EPT assemblages (insect orders Ephemeroptera, Plecoptera and
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Trichoptera), particularly, have proven effective ecological indica-
tors of human disturbances (Rosenberg and Resh, 1993; Stoddard
et al., 2008).

A goal of many biomonitoring approaches is to report how test
sites deviate from the “undisturbed” (natural) condition in terms
of the structure and/or composition of the assemblages they sup-
port. This is typically accomplished by designating “reference sites”,
that is, sites minimally affected by human activities and whose
biological, physical and chemical features serve as reference con-
dition for natural levels of patterns and processes (Hughes et al.,
1986; Stoddard et al., 2006; Hawkins et al., 2010). A set of refer-
ence sites should be specific for a particular typology (e.g., altitude,
stream size, and predominant substrate) and geographic domain
(biome and ecoregion) because these are important natural drivers
of stream characteristics, including their biota (Hughes et al., 1986,
1990; Gerritsen et al., 2000; Waite et al., 2000; Sánchez-Montoya
et al., 2007). This framework has been established as the “reference
condition approach” (RCA) (Bailey et al., 2004). In most cases it is not
practical to seek sites that have truly undisturbed/minimally dis-
turbed conditions because (1) human modifications are widespread
in most landscapes worldwide, and (2) many places have been
modified for hundreds (or even thousands) of years (Stoddard et al.,
2006; Whittier et al., 2007b; Herlihy et al., 2008). Instead, sites
in least-disturbed condition, i.e., the best set of sites available in
a continuous gradient of disturbance, are typically used to repre-
sent “reference” conditions (Reynoldson et al., 1997; Stoddard et al.,
2006; Yates and Bailey, 2010).

It is explicitly stated in the RCA that the reference condition
should be chosen based strictly on criteria concerning the minimal
exposure of the sites to human disturbances (Bailey et al., 2004).
Although human disturbances affect stream biological and habitat
attributes (Maddock, 1999), reference site selection should not be
based on either because it is difficult to distinguish between effects
from human disturbance and natural variation (Dovciak and Perry,
2002; Moreno et al., 2006). In fact, a key aspect of the RCA is that
natural variability is intrinsic in ecosystems and that this variability
must be accounted for by using models to understand the effects
of human disturbance on assemblage structure of fish (Oberdorff
et al., 2002; Tejerina-Garro et al., 2006; Pont et al., 2006, 2009) and
macroinvertebrates (Clarke et al., 2003; Bailey et al., 2004; Hawkins
et al., 2010; Moya et al., 2011).

A multitude of stressors have been identified and used as
criteria for determining reference sites. As geographic informa-
tion system (GIS) technology has become operationally simpler
and widely available (King et al., 2005), disturbances identified
at the catchment scale have been used for defining potential
reference areas (Collier et al., 2007; Wang et al., 2008). How-
ever, human modifications acting at both large (catchment) and
local (stream channel and riparian zone) scales should be inves-
tigated because pressures or stressors operating at both scales
can impair the stream biota (Bryce et al., 1999; Whittier et al.,
2007b; Hughes et al., 2010).

Increasingly, methods for defining and selecting reference sites
are applied to large spatial extents (whole ecoregions, states, and
countries), commonly involving hundreds or thousands of sites. The
Environmental Protection Agency of the United States of America
(US-EPA), in its national Wadeable Stream Assessment (WSA) pro-
gram, screened a series of physical habitat and water quality data,
setting thresholds for the selection of least-disturbed sites in differ-
ent ecoregions (Herlihy et al., 2008). The same “filtering” approach
was employed in regional assessments made by the same agency
(Klemm et al., 2003; Whittier et al., 2007b).  In a similar approach,
a large set of criteria of human disturbances operating at both local
and regional spatial scales were used to select least- and most-
disturbed sites on European streams (Nijboer et al., 2004; Pont et al.,
2006; Sánchez-Montoya et al., 2009).

However, methodologies employed at large spatial extents may
be inappropriate for studies dealing with more restricted spatial
extents and far fewer sites. First, for most ecosystems located in
less studied regions of the world, such as in tropical developing
countries, there is no reliable information about the physical and
chemical thresholds that indicate substantial disturbance (Boyero
et al., 2009). Second, the application of rigid filters to a small number
of sites is likely to select too few sites, or none at all. Even in Europe,
when hundreds of sites from 4 countries were analyzed, for many
stream types it was  not possible to find any single site that fulfilled
all the criteria proposed for European reference conditions (Nijboer
et al., 2004). Nevertheless, many monitoring initiatives are applied
at more restricted geographic areas (small to medium-sized basins
or sub-basins) and far fewer sites (dozens at best) (Baptista et al.,
2007; Moreno et al., 2009; Oliveira et al., 2011; Suriano et al., 2011).
To our knowledge, no systematic methodology has been proposed
to clearly define disturbance conditions in those situations.

When working with few sites, instead of trying to allocate sites
into ‘boxed’ categories from the onset of the project (e.g., least-,
intermediate-, and most-disturbed sites), the use of a continuous
disturbance gradient can be more advantageous for classifying the
sites included in the study, enabling the definition a posteriori of
the least-disturbed sites and the most-disturbed sites. This con-
trast is necessary for the development of MMIs  (e.g., Stoddard et al.,
2008; Oliveira et al., 2011). For instance, predictive models are first
concerned with describing assemblage composition in reference
conditions (Reynoldson et al., 1995), i.e., the “good tail” of a disturb-
ance gradient. In addition to biomonitoring studies, any applied
ecological research concerned with changes in patterns and pro-
cesses associated with the intensity of human modifications will
benefit from the use of a disturbance gradient.

In this study we  present a methodology to quantitatively define
disturbance gradients in two basins sampled with a relatively small
number of sites (40 each), each basin including a range of sites from
relatively undisturbed to greatly altered. To this end, we worked
with two hypotheses. (1) Disturbances taking place at both local
(stream sites) and catchment spatial scales reduce the EPT assem-
blage richness of the sites. (2) The proportion of variation in EPT
richness associated with natural variability among site habitats will
be greater in the basin with the weaker anthropogenic disturbance
gradient.

2. Methods

2.1. Study area

We  sampled streams in two basins of the Cerrado biome in the
state of Minas Gerais, southeastern Brazil: Upper Araguari basin (in
the Paraná river basin) and the Upper São Francisco basin (in the
São Francisco river basin) (Fig. 1). Both study areas were demar-
cated upstream of the first big reservoir of each basin (Nova Ponte
and Três Marias reservoirs, respectively). The Cerrado is the second-
most extensive biome of the Neotropics (Wantzen, 2003), originally
covering 20% of Brazilian territory, and one of the terrestrial biodi-
versity “hotspots” of the planet (Myers et al., 2000). It is also one
of the most threatened due to ever-expanding pasture and agricul-
tural activities (Wantzen et al., 2006). The Cerrado climate has two
well defined annual seasons: a dry season from October to March,
and a wet season from April to September, with 1200–1800 mm
of precipitation per year. The vegetation is typically savannah-like,
with denser forest formations along water courses and wet areas.

Most people living in the study areas dwell on farms and in small
towns (up to 20,000 inhabitants), although a few small cities (up
to 80,000 inhabitants) are present. The Upper Araguari has a well
developed system of irrigated agriculture, encompassing mainly
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Fig. 1. Location of the basins and stream sites sampled. (A) Upper Araguari basin and (B) Upper São Francisco basin.

soy, coffee, corn, and sugar cane culture. Irrigated agriculture is
less common in the Upper São Francisco, where pasture and small
family farms predominate.

2.2. Site selection

Forty “wadeable” stream sites (that can be traversed by a per-
son wading) ranging from 1st to 3rd order (sensu Strahler, 1957)
were selected on 1:100,000 scale maps in each basin and sampled
during the dry season. The site selection was performed through a
probability-based design as described in Olsen and Peck (2008),  the
same procedure used by the US-EPA in the Environmental Moni-
toring and Assessment Program Western Pilot Study (EMAP-West,
Stoddard et al., 2005) and its national Wadeable Stream Assess-
ment (WSA, Paulsen et al., 2008). In this approach, a master sample
frame (MS) is first established using a digitized drainage system
map  (1:100,000 scale), and then the sample sites are selected via a
hierarchical, spatially weighted criteria (Stevens and Olsen, 2003).
This procedure assures a balanced selection of sites across the range
of stream orders and geographic location. The Upper Araguari sites
were sampled in September 2009 and the Upper São Francisco sites
were sampled in August/September 2010.

2.3. Site habitat measurements

The field physical habitat was measured as described in Peck
et al. (2006).  The site lengths were set at 40 times their mean wetted
width, and a minimum of 150 m.  Given their narrow widths, most
sites were 150 m long. In each site, 11 equidistant cross-sectional
transects were marked, defining 10 sections of the same length.

In each transect and along the sections, a large set of mea-
surements were recorded, including site morphology (e.g., slope,
sinuosity, wetted and bankfull width, depth, and incision height),
habitat characteristics (e.g., substrate size and embeddedness, flow

type, and large wood), riparian structure (e.g., mid-channel and
margin shading, tree and herbaceous cover density) and human
disturbance in the channel and riparian zone (e.g., presence of pas-
ture, crops, pipes, and trash). Habitat metrics were then calculated
following Kaufmann et al. (1999).

The following physical and chemical characteristics of the water
column were also measured in the field for each site: pH, electri-
cal conductivity, and total dissolved solids (TDS). Water samples
were collected for further analysis in the laboratory, including
dissolved oxygen, turbidity, total alkalinity, total nitrogen, and
total phosphorus. Those analyses were conducted following APHA
(1998).

The site nutrient concentrations of both basins were extremely
low and not indicative of anthropogenic sources. In the Upper
Araguari, the values were 0.06 ± 0.01 mg/L (mean ± SD) for total
nitrogen and 0.03 ± 0.01 mg/L for total phosphorus. The concen-
trations in the Upper São Francisco were 0.08 ± 0.06 mg/L for total
nitrogen and 0.02 ± 0.01 mg/L for total phosphorus.

2.4. Macroinvertebrate sampling and laboratory processing

The biological sampling also followed the protocol of Peck et al.
(2006) and Hughes and Peck (2008).  Eleven sample units were
taken per stream site, one per transect, generating one composite
sample for each site. Each sample unit was collected through use of
a D-net (30 cm mouth width, 500 !m mesh), effectively sampling
1 m2 of stream bottom area sampled per site. The sample units were
obtained by following a systematic zigzag pattern along the sites
to avoid bias in habitat selection. Immediately after collection, the
composite samples were placed in individual plastic buckets and
preserved with 10% formalin.

In the laboratory, the macroinvertebrates were sorted by eye,
and the EPT individuals were identified to genus under a 100×
magnification stereoscope microscope through use of taxonomic
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Fig. 2. Conceptual model of the disturbance plane whose axes represent the amount
of  disturbance observed at the local scale (in-stream and riparian zone) and at the
catchment scale. The ideal least-disturbed sites would be those located closest to
the origin of the axes, with few disturbances observed at both scales. The ideal most-
disturbed sites would be those located in the opposite corner of the plane. A single
measurement of disturbance can be the Euclidean distance (calculated through the
Pythagorean theorem) between the location of the site in the plane and the origin
of  the axes (see the example in the figure with site “A”). For this purpose the axes
values should be standardized at the same scale.

keys (Pérez, 1988; Fernández and Domínguez, 2001; Mugnai et al.,
2010).

2.5. Data analyses

2.5.1. Calculation of the disturbance gradient
To describe the total exposure of the sites to human pressures,

we developed two separate indices: one reflecting disturbances at
the site scale and one reflecting disturbances at the catchment scale,
both having their origins (0 values) representing the absence of evi-
dence of disturbances. In each index, the higher the site value, the
greater the intensity of human modifications observed for that site,
i.e., the greater the deviation from the pristine condition at that spa-
tial scale. Thus, we positioned each site in a ‘disturbance bi-plane’
constructed with the two  disturbance indices as axes. The ‘ideal’
reference sites should be those lacking evidence of human mod-
ifications at both near/in-stream and catchment scales (concept
of minimally disturbed condition; Stoddard et al., 2006). Typi-
cally, however, reference sites are those with the least disturbances
among the sites available (concept of least-disturbed condition;
Stoddard et al., 2006). Through this conceptual model, the least-
and most-disturbed sites in a pool of sites can be visualized accord-
ing to their positions in the disturbance plane, the least-disturbed
sites being closer to the origin (lower left corner of the plane) and
the most-disturbed sites being farthest from the origin (upper right
corner of the plane) (Fig. 2).

For quantifying the local disturbance index (LDI) we used the
metric W1  hall, calculated as described in Kaufmann et al. (1999),
a measure commonly used in the US-EPA stream assessments. This
metric summarizes the amount of evidence observed in-channel
and in the riparian zone for 11 types of disturbances (buildings,
channel revetment, pavement, roads, pipes, trash and landfill, parks
and lawns, row crop agriculture, pasture, logging and mining) along
the eleven transects demarked at the stream site. The values are
weighted according to the proximity of the observation from the
stream channel (Kaufmann et al., 1999).

We assessed watershed land uses for each site through use of
manual image interpretation. Watersheds were extracted from the
terrain model from the Shuttle Radar Topographic Mission – SRTM
(USGS, 2005). We  manually interpreted high resolution multispec-
tral images in conjunction with the Landsat TM sensor using Spring
software (Camara et al., 1996). The high-resolution images pro-
vided information about the shape and texture of the elements, and
the Landsat images showed spectral response for different targets.
Our mapping identified three human-influenced land uses (pas-
ture, agriculture, and urban). The catchment percentages of each
land use were estimated for each site.

The catchment disturbance index (CDI) was based on the human
land uses in the catchments and was calculated following Rawer-
Jost et al. (2004),  according to the formula:

catchment disturbance index (CDI) = 4 × % urban areas

+ 2 × % agricultural areas + % pasture areas

We evaluated the collinearity between local and catchment
human disturbances in each basin through use of Pearson corre-
lations between the LDI and the CDI values of the sites.

Because the local and the catchment disturbance indices do not
share the same numerical scale, both were separately standardized
to provide a similar scale in values. This transformation was neces-
sary to reliably calculate an integrated disturbance index for each
site, based on both the local and catchment indices (see below). The
values of each index were divided by 75% of the maximum value
that each can theoretically achieve. We  did not use the maximum
values of each index for these standardizations because those val-
ues are rarely achieved. Dividing by the maximum values would
shrink greatly and unnecessarily the values in the standardized
indices, shifting nearly all the sites very close to the origin of the
disturbance plane.

The CDI values potentially range from 0 (no land use in the catch-
ment) to 400 (entire catchment occupied by urban areas). So the
values of this index were divided by 300. The LDI values (W1 hall
metric) potentially range from 0 (no evidence of any type of dis-
turbance in the channel or riparian zone) to 16.5 (all 11 types of
disturbances observed inside the stream channel in all transects).
But this theoretical upper value is highly unlikely because of spatial
limitations and negative colinearities among the types of disturb-
ance (listed above). The empirical maximum value of the W1  hall
metric is around 7 (Kaufmann et al., 1999), so the values of this
index were divided by 5.

To summarize the disturbances measured at both scales in a
single index we  calculated for each site an integrated disturbance
index (IDI). It was measured as the Euclidian distance between
the position of the site in the disturbance plane (axes standard-
ized) to the origin of the plane (Fig. 2). This was  performed through
application of the Pythagorean theorem:

integrated disturbance index (IDI) =
⇣LDI

5

⌘2
+

⇣ CDI
300

⌘2
�1/2

The higher the IDI of a site, the more that site deviates from the
‘origin’, i.e., from the ‘ideal’ reference condition of no disturbance
inside the stream channel, in the riparian zone, or in the catchment.
Thus, we  defined the disturbance gradient simply as the ascending
ordination of the IDI’s in a pool of sites. The steeper the disturbance
gradient in a pool of sites, the greater the difference in ecological
condition between the least- and most-disturbed sites in the pool.

2.5.2. EPT richness associations with the disturbance indices
To evaluate how EPT assemblages responded to the degree

of human disturbances at both local and catchment scales, we



Author's personal copy

R. Ligeiro et al. / Ecological Indicators 25 (2013) 45–57 49

Table  1
Candidate site habitat metrics for explaining EPT richness variability in both studied basins.

Metric name Metric code Not significantly correlated Not strongly correlated

With disturbances (p > 0.05) Among each other (r < 0.6)

Upper Araguari Upper São Francisco Upper Araguari Upper São Francisco

Mean width xwidth *
Mean depth xdepth *
Mean slope xslope
Mean bankfull width XBKF W
Mean width × mean depth XWXD * * * *
Mean (width/depth) xwd rat * *
Mean depth × mean slope xdepth xslope
Bankfull (width/depth) BKF WDrat * * * *
Mean residual pool area rp100 *
Mean water volume/m2 v1w msq
Riparian canopy (>5 m high) presence xpcan
Riparian canopy (>5 m high) cover XC *
Total riparian cover (all vegetation layers) xcmg * * * *
Total riparian woody cover xcmgw
Mean canopy density (mid-stream) xcdenmid
Natural cover in the stream (all) xfc nat * *
Natural cover provided by large wood xfc lwd * *
Percentage of fast water pct fast * * * *
Percentage of fines (silt and clay) pct fn *
Percentage of sand + fines pct sfgf *
Percentage of cobble pct cb * *
Percentage of coarse substrate (>16 mm)  pct bigr *
Log  of mean substrate diameter lsub dmm  * *
Mean substrate embeddedness xembed
Log of relative bed stability LRBS
pH pH * *
Conductivity (!S/cm) Cond
Total dissolved solids (g/L) TDS * *
Turbity (NTU) Turb * *
Dissolved oxygen (mg/L) DO * *
Alkalinity (mequiv./L) Alk

conducted multiple linear regressions between EPT richness and
the standardized LDI and CDI of the sites for each basin. We  also
regressed EPT richness against the IDI to evaluate its performance
relative to EPT richness variability.

2.5.3. Contribution of natural variability of site habitat
characteristics to explaining the variation of EPT richness

Through the following methodology, we evaluated how much
natural physical habitat variability added to the explanation of EPT
richness provided by the disturbance gradient alone. The process
was performed separately for each basin (Fig. 3).

We started with a set of 31 habitat metrics calculated from the
raw field data (Table 1). With these metrics we  aimed to repre-
sent key aspects of the habitats of the sites, such as morphology
(e.g., mean wetted and bankfull width, mean depth, and mean
slope), riparian condition (e.g., riparian vegetation extent and mean
canopy cover), habitat heterogeneity (e.g., % fast water, % large
substrates, % fine substrates, and mean substrate embeddedness)
and water quality (e.g., dissolved oxygen, pH, and alkalinity). We
obtained Pearson correlations between those metrics and all the
disturbance descriptors we had available: the 3 land uses percent-
ages, the 11 types of local site disturbances, the LDI, the CDI and
the IDI. All metrics significantly correlated (p < 0.05) with any of
the disturbance descriptors were disregarded for the next step of
the analysis. In this way, we filtered all the habitat metrics that
could be affected by human disturbances of any kind; the remaining
metrics were considered as sources of natural variation in the sites.
Next, a Pearson product–moment correlation matrix was  calcu-
lated with all the metrics not correlated with disturbance evidence.
The redundant metrics (r > 0.6) were removed and the choice of the
metrics to be retained was based on ecological rationale.

Among the 31 initial habitat metrics, many were not signifi-
cantly correlated with human disturbances (9 in the Upper Araguari
and 15 in the Upper São Francisco, Table 1). In both basins, some of
the remaining metrics were removed because of high colinearities
(r > 0.6). In the Upper Araguari, mean depth and mean residual pool
area were removed and mean wetted width × mean thalweg depth
was kept, because we believe the latter metric best summarized
the stream channel size. In the Upper São Francisco, mean wetted
width was  removed and mean wetted width × mean thalweg depth
was kept (same reason as above) and riparian canopy cover was
removed and total riparian cover, a more embracing metric, was
kept. Percentage of coarse substrates (>16 mm), percentage of fines
(<0.06 mm:  silt and clay), percentage of sand + fines (<2.0 mm),
and log of the geometric mean substrate diameter had high cor-
relations. We chose to include log of mean substrate diameter
because it best represented the predominant substrate sizes of the
sites.

We used the reduced set of habitat metrics to perform a
hierarchical multiple regression, forcing the entrance of the inte-
grated disturbance index (IDI) in the first block and allowing, in
the second block, a best-subsets multiple regression procedure
search for the combinations of habitat metrics that best explained
the remaining variability in EPT richness. The R2 values were
considered as criteria for the selection of the best models. We
restricted the number of predictor variables in the final mod-
els to a total of 4 (10% of 40 sites) to avoid model over-fitting
(Harrell, 2001; Tabachnick and Fidell, 2007). Thus, in addition
to the IDI in the first block, three habitat metrics were allowed
to enter in the second block. Hierarchical multiple regression is
an efficient way to isolate the contribution of some factor in a
regression model because residual regressions can lead to biased
estimations of the parameters of the models (see Freckleton,
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Fig. 3. Summary of the methodological design used to test statistically how site habitat metrics not subjected to human disturbances enhanced the explanation given by the
integrated disturbance index (IDI) to EPT richness in each basin.
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Fig. 4. Distribution (medians and quartiles) of the values of the (A) local disturbance index and of the (B) catchment disturbance index in each studied basin.

2002). Only predictor variables with individual F-values > 1 were
allowed in the final models. The statistical significance of the hier-
archical multiple regressions (block 1 vs block 1 + block 2) were
tested through analysis of variance (ANOVA’s). In this way  we
tested whether the habitat metrics contributed significantly to
the explanation of EPT richness derived from the IDI for each
basin.

3. Results

3.1. Local and catchment disturbance indices and the disturbance
plane

The two basins had similar patterns in most LDI values (Fig. 4A),
although the Upper Araguari basin had a few higher values, result-
ing from urban sites. On the other hand, the patterns of CDI
values varied considerably between the basins, the Upper Araguari
had higher CDI values than the Upper São Francisco (Fig. 4B).
In the Upper São Francisco, only one site had a CDI value >100.
The differing patterns are explained by the land use patterns in
both basins (Fig. 5A–C). In the Upper Araguari we  observed a
higher proportion of agriculture in the catchments, whereas in the
Upper São Francisco pasture predominated. Proportions of urban
areas were low in both basins, most catchments having none.
The Pearson correlations between the LDI and CDI scores were
weak (r = 0.21 in the Upper Araguari and r = 0.35 in the Upper São
Francisco).

In both basins few sites were located close to the ori-
gin on the disturbance plane (Fig. 6), but because of higher
CDI values, more Upper Araguari sites were located farther
from the origin. This distribution pattern is summarized by
the different slopes of the disturbance gradients of the basins,
showing the IDI values in ascending order (Fig. 7). In the
Upper Araguari we observed a much wider range in site
IDI values (i.e., more sites nearer and farther from the ori-
gin), indicating a much stronger disturbance gradient in that
basin.

3.2. Description of the EPT assemblages

A total of 5463 EPT individuals (61 genera) were identified
in Upper Araguari sites, and 15,133 EPT individuals (65 gen-
era) were identified in Upper São Francisco sites. In both basins
Ephemeroptera comprised the majority of the EPT genera (30
in the Upper Araguari and 35 in the Upper São Francisco) and
number of organisms (3291 in the Upper Araguari and 12,529 in
the Upper São Francisco). In the Upper Araguari, the most abun-
dant genera were Smicridea (Trichoptera), and the Ephemeroptera
Thraulodes, Traverhyphes and Tricorythopsis.  Those four genera
represented 43% of the EPT individuals collected in the Upper
Araguari. In the Upper São Francisco, the most abundant genera
were Callibaetis,  Cloeodes, Americabaetis,  Caenis and Traverhyphes,
all Ephemeroptera. Those five genera represented 54% of the EPT
individuals collected in the Upper São Francisco. Around 25% of the
taxa identified in the Upper Araguari, and 20% of the taxa iden-
tified in the Upper São Francisco, can be considered rare taxa,
with just 5 or fewer individuals identified across all sites of each
basin.

3.3. EPT richness versus disturbance indices

The variation of EPT richness explained by the LDI and CDI
together was much higher in the Upper Araguari (R2 = 0.40) than
in the Upper São Francisco (R2 = 0.18) (Table 2). In both basins, EPT
richness was significantly related to the CDI, but only in the Upper
Araguari did the LDI contribute significantly to explain EPT richness
variation (Table 2). The slope between LDI and EPT richness in the
Upper São Francisco approached zero (Table 2). As expected, all sig-
nificant relationships were negative. In the Upper Araguari, the IDI
explained a moderate amount of EPT richness (Simple linear regres-
sion, R2 = 0.39, F(1,38) = 24.6, p < 0.001; Fig. 8A), nearly the same as
the combined explanations given by the LDI and CDI in the multi-
ple regression. In the Upper São Francisco, the IDI explained poorly,
but significantly, EPT richness variation (simple linear regression,
R2 = 0.11, F(1,38) = 4.55, p = 0.039; Fig. 8B).

Table 2
Multiple regression results for each basin with EPT richness as the response variable and the local disturbance index (LDI) and the catchment disturbance index (CDI) as
predictor variables.

F-Value (2,37) p-Value R-Square Beta Std. err. of beta t(37) p-Value

Upper Araguari 12.5 <0.001 0.403
Intercept 9.806 <0.001
CDI −0.450 0.130 −3.467 0.001
LDI −0.364 0.130 −2.802 0.008

Upper São Francisco 4.005 0.027 0.178
Intercept 8.820 <0.001
CDI −0.424 0.159 −2.671 0.011
LDI 0.007 0.159 0.043 0.966
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row crop agricultural and (C) urban areas in the catchments of the sites sampled in
each basin.

3.4. Contribution of natural variability of habitat characteristics
in explaining EPT richness

The hierarchical regressions informed how the explanations (R2

values) given by the IDIs to EPT richness variations were increased

by the addition of habitat metrics not related to human distur-
bances. In the Upper Araguari, the increment was low and just
marginally significant (Table 3). In that basin, the R2 value increased
from 0.39 to 0.49, an increase of 0.1. On the other hand, in the Upper
São Francisco the increment was  much greater, the R2 value rising
from 0.11 to 0.50, an increment of 0.39. The amount of explanation
given by the combined models (IDI + habitat metrics not corre-
lated with disturbance) were similar in both basins, with R2 values
around 0.5, meaning that the final models explained only about half
the variation.

The combined models generated from best-subsets multiple
regressions had, in addition to the IDI, 2 habitat metrics in the
Upper Araguari and 3 habitat metrics in the Upper São Francisco
(all with F-values > 1, Table 3). In both basins, a site size metric
(mean width × mean depth) was  important in explaining EPT rich-
ness variation. In the Upper Araguari, another morphologic metric
(bankfull width/depth) was  incorporated in the model, whereas in
the Upper São Francisco, microhabitat metrics (percent fast flows
and log of mean substrate diameter) were included.

4. Discussion

4.1. Premises for comparisons between sites

It has been long recognized that some geographic (e.g., ecore-
gions) and non-geographic features (e.g., typologies) of stream
sites exercise a strong influence on the composition and struc-
ture of their macroinvertebrate assemblages (Hughes, 1985, 1995;
Gerritsen et al., 2000). Accordingly, it is important for the assigned
reference sites and the test sites of a study to share these key biolog-
ical drivers, allowing reliable comparisons between them (Herlihy
et al., 2008). In the words of Gerritsen et al. (2000) it is important
to “put like with like”.

Gradual changes in the habitat template, in the available food
resources, and in the biological assemblages naturally occur along
the longitudinal gradient of lotic ecosystems (from spring to
mouth), resulting mainly from downstream changes in their mor-
phological dimensions, catchment areas and discharges (Vannote
et al., 1980; Poole, 2002; Hughes et al., 2011). We  reduced such
sources of variation by selecting streams with similar morphologi-
cal dimensions. All sites can be classified as small streams, close to
the headwaters.

There is no geographic classification formally designed for
Brazil that is comparable in detail to the ecoregion classifica-
tions of the USA (Omernik, 1995) or Europe (e.g., Gustafsson and
Ahlén, 1996). However, the basins studied are in the same biome
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Fig. 6. Distribution of the sites of each basin in the disturbance plane, with Upper Araguari sites represented by open circles (©) and Upper São Francisco sites represented
by  filled boxes ( ). The axes of the local disturbance index (LDI) and the catchment disturbance index (CDI) were standardized at the same scale (relative positions of the
sites  on each axis, and in the plane, were retained).
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(Cerrado) and in the same general terrestrial and aquatic ecoregions
outlined by Olson et al. (2001),  meaning that the sites share similar
climatic, edaphic, vegetation, geological and biogeographic condi-
tions (Olson et al., 2001; Wantzen, 2003). Moreover, the basins were
analyzed separately, and their individual areas are much smaller
than those of the US level IV ecoregions, the most detailed level
of their classification. Thus, although lacking an official detailed
classification, we consider all the sites in the same ecoregion.

4.2. The role of the disturbances measured at local and catchment
spatial scales

As stated in the classical view of stream impairment, human
disturbances operating at multiple scales can alter patterns and
processes of the natural habitat, ultimately leading to modifications
or impairment of biological assemblages (Karr, 1999; Norris and
Thoms, 1999; Bryce et al., 1999; Feld and Hering, 2007). However,
the exact mechanistic pathways among the origins of impairment,
the habitat modifications, and the biological responses are not well
known in most cases (Bedford and Preston, 1988; Karr, 1991). For
this reason, rather than searching for all the individual sources
of impairment, it is important to develop a group of disturbance
metrics that can serve as general indicators of the total pressure to
which an ecosystem may  be subjected (Boulton, 1999).

Disturbances in the channel or riparian zone can impair the habi-
tats and the biota (Bryce et al., 1999; Death and Joy, 2004; Kaufmann
and Hughes, 2006). Because catchments drive the stream features
in almost every aspect (Hynes, 1975; Wiens, 2002), human land
uses are also usually linked with the ecological condition of streams
(Bryce et al., 1999; Allan, 2004; Wang et al., 2008). Non-point

sources in catchments commonly contribute excess sediments,
nutrients and pollutants to streams and rivers (Allan and Castillo,
2007; Allan, 2004). Human activities in the catchment also influ-
ence the condition of stream riparian zones (Van Sickle et al., 2004;
Sponseller et al., 2001; Miserendino et al., 2011). The ordering of
“disturbance potential” used in this study (urban areas having more
weight than row crop agriculture, which in turn has more weight
than pasture), as well as the use of the whole catchment area as
the “buffer” to estimate catchment human pressures, are corrob-
orated by many previous studies (Sponseller et al., 2001; Mebane
et al., 2003; Wang et al., 2008; Gucker et al., 2009; Trautwein et al.,
2011). In our study, disturbances measured at local and catchment
spatial scales both reduced EPT richness, corroborating our first
hypothesis. In agreement with Kail et al. (2012),  catchment distur-
bances had a greater effect than local disturbances in these basins.
The latter were not even significantly related to macroinvertebrate
richness in the Upper São Francisco sites.

Local disturbance was not correlated with catchment disturb-
ance. This lack of association means that catchment land uses were
not driving near or in-stream modifications, and what is observed
at one scale can differ from what is observed at the other. For
instance, in our study we  observed catchments highly dominated
by row crop agriculture but with undisturbed riparian vegetation
and stream channels. Conversely, we also had catchments with
mostly natural land cover but stream channels altered by live-
stock. Scenarios like these are likely to happen elsewhere (Nijboer
et al., 2004). Consequently, relying on just one scale to describe the
level of human pressure at a site can lead to misleading interpre-
tations of biological responses (Bryce et al., 1999; Feld and Hering,
2007).

Table 3
Hierarchical multiple regression results contrasting the significance of the differences between the regression models in each basin. The first models (block 1) consisted of
simple  regressions with EPT richness as the response variable and the integrated disturbance index (IDI) as the predictor variable. The second models (block 1 + block 2)
included as predictor variables the habitat metrics selected by the best subsets procedure as those which, together with the IDI, better explained EPT richness. Habitat metric
codes  are defined in Table 1.

Basin F-Value p-Value R-Square Metrics’ mean beta values ANOVA test for hierarchical
regression analysis [block 1 vs
(block 1 + block 2)]

F-Value p-Value

Upper Araguari
Model 1 24.6 <0.001 0.393

IDI

3.194 0.053
−0.627

Model  2 11.28 <0.001 0.484
IDI XWXD BKF WDrat
−0.523 0.227 0.299

Upper São Francisco
Model 1 4.548 0.04 0.107

IDI

9.144 <0.001
−0.327

Model  2 8.726 <0.001 0.499
IDI XWXD pct fast lsub dmm
−0.134 0.245 0.414 0.276
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Fig. 8. Linear regressions between the integrated disturbance index (IDI) values and
the EPT richness of the sites of (A) the Upper Araguari basin, represented by open
circles (©), and (B) the Upper São Francisco basin, represented by filled boxes ( ).

The integrated disturbance index (IDI) proved to be a useful
and accurate univariate descriptor of the totality of disturbances
measured at different spatial scales. It explained the variability in
EPT richness better than separate local and catchment indices, and
almost as well as when those two indices were separately included
in multiple regression. The existence of a single index to summa-
rize the overall ecological condition, although never perfect, is a
quick and practical way to describe the condition of individual
sites and the relative condition of a site in comparison to oth-
ers (Bryce et al., 1999; Wang et al., 2008). This is necessary to
set disturbance thresholds and to present to society and stake-
holders an objective and simple measurement of site conditions
(Hughes and Peck, 2008). The range and distribution of IDI val-
ues across a representative pool of sites can indicate the strength
of the disturbance gradient in a region. The greater the range and
evenness of the distribution of sites across that range, the greater
the strength of the disturbance gradient (shown in the ascending
ordinations of Fig. 7), and the greater the expected differences in
ecological condition between the least- and the most-disturbed
sites.

4.3. The role of natural habitat variation

The importance of natural stream habitat variation has been
long recognized in stream ecology (Karr and Dudley, 1981;
Allan and Castillo, 2007). Metrics related to hydromorphology

(percentage of fast flows, mean wetted width × mean thalweg
depth, bankfull width/depth, log of geometric mean substrate
diameter), which were not related to human disturbances in
these basins, helped explain EPT richness variability, apart from
the effects that could be attributed solely to human influences.
Those factors are commonly reported as important for structur-
ing stream macroinvertebrate assemblages (Schmera and Erős,
2004; Brooks et al., 2005; LeCraw and Mackereth, 2010). Con-
sistent with our second hypothesis, the relative and absolute
contribution of the natural habitat was much more pronounced
in the Upper São Francisco basin, which had a weaker disturbance
gradient.

One conclusion emerging from our results is that if the anthro-
pogenic disturbance gradient is not strong, the deleterious effect
of human activities on assemblage richness will be mostly eclipsed
by variation associated with stream habitat natural variability. In
other words, the disturbance “signal” will be buried by habitat vari-
ation “noise” (Parsons and Norris, 1996; Gerth and Herlihy, 2006).
As can be observed in the Upper São Francisco Basin (Fig. 8B),
sites that were slightly more perturbed frequently had higher EPT
richness than others that were slightly less perturbed. Many of
these divergences in relation to what would be expected from
the disturbance-only model were probably driven by differences
in stream hydromorphology. In the Upper Araguari basin, which
had a stronger disturbance gradient, those situations also occurred,
but less frequently (Fig. 8A). A second conclusion is that the effort
to control broad-scale drivers of biological assemblages through
use of ecoregions and stream typologies does not eliminate the
necessity to account for local habitat variability when comparing
sites (Hughes et al., 1986; Waite et al., 2000; Pinto et al., 2009).
Although we aimed to standardize the stream sizes, a size metric
(mean width × mean depth) still explained significant differences
in EPT richness. In addition, even neighboring sites may  have highly
dissimilar habitats and biological assemblages (Downes et al., 2000;
Finn and Poff, 2005; Ligeiro et al., 2010), so that ecoregion standard-
ization also is not enough.

The amount of EPT richness variability explained was  similar in
both basins (around 50%). This value can be considered high, given:
(1) the intrinsic complexity and unpredictability of stream ecosys-
tems and the difficulty of obtaining good models of them (Harris
and Heathwaite, 2011), (2) the sources of variation not accounted
for in this study, such as legacy effects (Allan, 2004) and condi-
tions at upstream reaches (Kail and Hering, 2009) or at neighboring
sites (Sanderson et al., 2005), and (3) the intrinsic unpredictability
(“noise”) related to seasonal and sampling variability (Kaufmann
et al., 1999; Kaufmann and Hughes, 2006). We  emphasize that the
stream habitat contribution to richness explanation was  analyzed
in a very conservative way. To reliably determine the degree that
natural habitat variability can add explanation at varying levels of
disturbance strength, we  dealt only with the habitat metrics not
significantly correlated with any of the disturbance measurements
we had available. In this regard, we even discarded metrics sig-
nificantly but weakly correlated to disturbance (e.g., r < 0.4). Thus,
we believe that habitat variability has a greater role in structuring
macroinvertebrate assemblages than shown in our results, because
those rejected habitat metrics that were related to human distur-
bances were also driven by natural variability to some degree (King
et al., 2005).

4.4. Importance of the construction of a disturbance gradient

The explicit, quantitative determination of a disturbance gra-
dient is more advantageous than a set of disturbance categories
because distinct separations in ecological conditions should be
rare in any group of sites (Whittier et al., 2007b; Herlihy et al.,
2008). This is true for all sites we call reference, least-disturbed,
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most-disturbed, or impaired. Depending on the intensity and
extent of human influences in the landscape, sometimes it is nec-
essary to relax the stringency of the acceptance thresholds in order
to find least-disturbed conditions (Stoddard et al., 2006; Whittier
et al., 2007b; Herlihy et al., 2008). So it is important to recognize the
relativity of terms like “least”, or “most”, when describing ecological
condition (Stoddard et al., 2006). Absolute, “boxed” designations,
although comfortable and operationally easier to handle, can lead
to misunderstandings or erroneous comparisons among studies
simply because the true ecological conditions of the sites along the
disturbance gradient continuum were not explicitly stated.

Often the designations of reference and most-disturbed sites
are made prior to sampling (Bailey et al., 2004). GIS data and tech-
niques have been widely applied when screening for reference sites
(Collier et al., 2007; Yates and Bailey, 2010) and field reconnais-
sance is strongly recommended (Hughes et al., 1986; Yates and
Bailey, 2010). Yet, even in those cases we encourage researchers to
quantitatively re-assess the disturbance gradient after field samp-
ling to check the validity of any previous classifications and the
exact quantitative difference in the conditions between the “refer-
ence” and “test” sites.

4.5. The benefits, scope and further possibilities of the proposed
methodology

The disturbance plane conceived in this work, visually describ-
ing the intensity of human disturbances at both local and catchment
scales, established an easy and intuitive way to describe the total
amount of pressure at sites. The disturbance plane facilitates com-
parisons of site conditions in a more straightforward and specific
manner, quantitatively positioning each site along a disturbance
continuum, rather than assigning labels to the sites. When neces-
sary, labels such as “minimally-”, “least-” and “most-disturbed” can
be assigned to sites based on quantitative data versus subjective
decisions. Objective criteria and quantitative approaches to select
reference sites have been proven more efficient for selecting the
“best” sites (Whittier et al., 2007b),  and the same may  be true for
selecting the “worst” ones.

Because only direct observations of human activities were used
to describe anthropogenic pressure, further characterization of the
chemical and physical habitat of the least- and most-disturbed
sites can be made without incurring any conceptual circularity. As
addressed before, metrics like dissolved nutrient concentrations,
riparian cover and sediment sizes, although commonly associated
with human modifications, are also subject to natural variabil-
ity (King et al., 2005; Miserendino et al., 2011). For example, in
this study no land use measurement or local modification was
correlated with nutrient concentrations (total phosphorous and
total nitrogen). Low nutrient concentrations are common in Cer-
rado streams because of naturally oligotrophic soils (Wantzen,
2003). In the Upper São Francisco, no evidence of disturbance
was correlated with substrate sizes and riparian vegetation cover
(Table 1). So, in accord with Bailey et al. (2004),  natural patterns,
not researchers’ opinions, should be used to characterize reference
condition attributes.

The proposed methodology was well suited for describing the
disturbance gradient of the 40 sites we studied in each basin. When
necessary, sites from different regions can be incorporated in the
same disturbance plane (as shown in Fig. 6). We  believe that this
methodology is also applicable to larger datasets, although fur-
ther research is needed to confirm this assumption and to compare
outputs generated through other approaches.

Depending on researcher preferences and the amount of data
available, local and/or catchment disturbance indices can be cal-
culated in different ways, perhaps using different disturbance
measurements. For instance, other commonly used metrics to

characterize human pressure include human population density,
livestock density, number of dwellings and road density (Wang
et al., 2008; Brown et al., 2009). If one desires further changes in this
methodology, more disturbance axes can be added to the model,
perhaps representing factors considered key stressors in particular
studies (e.g., dams and toxic substances). This will generate n-
dimensional disturbance polygons, rather than the bi-dimensional
disturbance plane presented in this work. Although such refine-
ments erode the simplicity and visual appeal of the model, they
could improve the accuracy of the integrated disturbance quantifi-
cations of the sites (Danz et al., 2007).

In our study, the IDI was  a reliable univariate measurement of
site disturbance status. The IDI is also a good tool for describing
the disturbance gradient strength in a pool of sites, via the range
and distribution of its values. So, rather than a standardized and
rigid methodology, we offer a flexible and adaptive framework for
characterizing and quantifying disturbance in many situations.

5. Conclusions

We  showed through our results that a reliable and comprehen-
sive characterization of human pressures on streams relies on the
use of different tools and should integrate data from different spa-
tial scales. In our study, local and catchment disturbances were not
correlated, and both independently affected site EPT assemblages.
The proposed methodology quantified the human pressure on sites
without resorting to naturally varying habitat metrics. We  demon-
strated that the strength of the disturbance gradient influenced the
degree to which natural habitat variability explained EPT richness
variation, a finding that has important implications for biomoni-
toring studies. Thus, the use of quantitative disturbance gradients
is essential for efficient use of ecological indicators and we  advise
researchers to define quantitatively the disturbance status of their
study sites. In this study we  presented a framework for doing so.
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